234 results
Course Description: This course develops fundamental concepts and methodology in the design and analysis of experiments. Topics include analysis of variance, multiple comparison tests, completely randomized designs, the general linear model approach to ANOVA, randomized block designs, Latin square and related designs, completely randomized factorial designs with two or more treatments, hierarchical designs, split-plot and confounded factorial designs, and analysis of covariance. Conceptual discussion in lectures is supplemented with hands-on practice in applied data-analysis tasks using SAS or R statistical software.
Course Description: This course introduces various topics in experimental design, including simple comparative experiments, single factor analysis of variance, randomized blocks, Latin squares, factorial designs, blocking and confounding, and two-level factorial designs. The statistical software R is used throughout this course. Prerequisite: A prior course in regression.
Course Description: Applies basic engineering principles, analytical procedures and design methodology to special problems of current interest in civil engineering. Topic for each semester are announced at the time of course enrollment.
Course Description: Applies basic engineering principles, analytical procedures and design methodology to special problems of current interest in civil engineering. Topics for each semester are announced at the time of course enrollment.
Course Description: Applies basic engineering principles, analytical procedures and design methodology to special problems of current interest in civil engineering. Topics for each semester are announced at the time of course enrollment. Check with the course instructor regarding any prerequisites. Prerequisite: Instructor's Permission
Course Description: Direct stiffness analysis of frames and grids; second order frame analysis; uniform torsion of non-circular sections; influence functions; introduction to work and energy theorems; polynomial approximation and approximate stiffness matrices for framed structures; topics in beam analysis including shear deformable beams, beams on elastic foundations and elastic foundations. Prerequisite: CE 3300 or equivalent.
Course Description: Introduction to computational tools and approaches common in water resource engineering. Topics include: geographic information systems (GIS) for water resources; software tools applied for hydrologic and hydraulic data analysis and visualization; and use of industry-standard hydrology and hydraulic models water resource system simulation and design. Pre/Coreq: Students must have completed or currently enrolled in CE 3220.
Course Description: This course provides the essential aspects of the "Project lifecycle" process from the initial conception phase through the completion phase of a project. Specifically, by focusing on the Architecture, Engineering and Construction (AEC) projects, students will be introduced to important concepts related to planning and financing a project, budgeting and scheduling, and managing and controlling a technical engineering project.
Course Description: Introduces numerical modeling concepts used in engineering simulation tools like computational fluid dynamics and structural mechanics analysis software. Topics covered include discretization methods of partial differential equations, numerical solutions of linear matrix equations, and relaxation techniques for solving stiff equation sets. As part of the course, students will use Matlab, CFD, and mechanical analysis tools.
Course Description: Special topics in aerospace engineering
Course Description: This topic covers principles of human factors engineering, understanding and designing systems that take into account human capabilities and limitations from cognitive, physical, and social perspectives. Models of human performance and human-machine interaction are covered as well as methods of design and evaluation. Prerequisite: Basic statistics knowledge (ANOVA, linear regression)
Course Description: Cornerstone course for first-year SEAS undergraduates, introducing them to engineering practice and design philosophy, via exposure to open-ended, realistic , hands-on challenges. Students engage in both individual and team work, and consider the contexts in which engineering challenges arise. SEAS majors and potential career paths are also introduced. Students who have taken ENGR 1620 or 1621 or both, can't enroll in ENGR 1624.
Course Description: This is the first in a two-semester course sequence for first-year SEAS undergraduates. Students are introduced to engineering practice and the design process, the concept of engineering as an endeavor that shapes and is shaped by society, the fundamentals of engineering ethics, and oral and visual communication. Majors and potential career paths are also introduced. Restricted to 1st Year Engineering Undergraduates or Instructor's Consent
Course Description: This is the second in a two-semester course sequence for first-year SEAS undergraduates. Students will engage in an open-ended authentic design project that is performed as part of a team. Technical writing is emphasized, as is designing for social responsibility. Students will develop skills for prototyping, data analysis, and modeling. Restricted to First-Year Engineering Students or Instructor's Consent
Course Description: Covers the fundamental concepts necessary for success in engineering courses and Applied Mathemtics courses.
0 results
No professors matched your search.