231 results
Course Description: Students act as a consultant team to develop sustainable planning and design strategies for sites which rotate each year.
Course Description: This course provides students with the background necessary to model, store, manipulate, and exchange information to support decision making. It covers Unified Modeling Language (UML), SQL, and XML; the development of semantic models for describing data and their relationships; effective use of SQL; web-based technologies for disseminating information; and application of these technologies through web-enabled database systems. Corequisite: CS 2100 or CS 2110.
Course Description: Focuses on the practice of systems engineering directly from current systems engineers. A variety of topics are covered by invited speakers from industry, government, and the academy. Discussions include engineering design projects, alternative career paths, graduate studies, professional development, and more immediate options with opportunities for summer internships and capstone projects. Prereq: 3rd Year standing in systems engineering.
Course Description: This is a colloquium that allows fourth-year students to learn about engineering design, innovation, teamwork, technical communication, and project management in the context of their two-semester systems capstone design project. Prerequisite: must have successfully completed 6 or more courses in the standard SYS curriculum (SYS 2001, SYS 2202, and 4 of the following: SYS 3021, SYS 3023, SYS 3034, SYS 3060, and SYS 3062)
Course Description: The course focuses on engineering's role in commercialization of vaccines and biologics. Biologics are more complex than small molecule drug products. This course includes an overview of vaccines and biologics from historical context, product, process and analytical technologies, immunology, clinical, regulatory and ethical considerations, economics, risk mitigation, and impact on human health. Prerequisites: 4th year in CHE or BME
Course Description: Quantitative engineering aspects of industrial applications of biology including the microbial synthesis of commercial products, environmental biotechnology, and the manufacture of biopharmaceuticals through recombinant microorganisms, transgenic animals, and plants. Three lecture hours. Prerequisite: CHE 2216, CHE 2246, CHE 3321; corequisite: CHE 3318, and 3322.
Course Description: Introduction to properties, production, and use of biological molecules of importance to medicine and industry, such as proteins, enzymes, and antibiotics. Topics may include fermentation and cell culture processes, biological mass transfer, enzyme engineering, and implications of recent advances in molecular biology, genomics, and proteomics. Prerequisite: Instructor permission.
Course Description: Analyzes the mechanisms and kinetics of various polymerization reactions; relations between the molecular structure and polymer properties, and how these properties can be influenced by the polymerization process; fundamental concepts of polymer solution and melt rheology. Applications to polymer processing operations, such as extrusion, molding, and fiber spinning. Three lecture hours. Pre- or Co-requisite CHE 3321 or BME 3240 or MAE 3140
Course Description: Analyzes the mechanisms and kinetics of various polymerization reactions; relations between the molecular structure and polymer properties, and how these properties can be influenced by the polymerization process; fundamental concepts of polymer solution and melt rheology. Applications to polymer processing operations, such as extrusion, molding, and fiber spinning. Three lecture hours. Prerequisite: CHE 3321 or instructor permission.
Course Description: This course engages students with the idea that success in posing and solving engineering problems requires attention to the social dimensions of professional endeavors and practice. STS theories and methods are applied to student thesis projects. Students produce a prospectus for the undregraduate thesis project. Students must be in residence to take this course. Students are not permitted to take STS 4500 and STS 4600 simultaneously. Prereq: STS 2600 and STS 2000 or STS 3000 level (or writing requirement equivalent) course. 4th Year Engineering or by instructor permission for early graduation.
Course Description: The mission of UVA - SEAS is "to make the world a better place by creating and disseminating knowledge and by preparing engineering leaders to solve global challenges." In alignment with that mission, this course seeks to equip undergraduates with knowledge, understanding, and practice to prepare them for ethical leadership now, as students, and for their future as engineering leaders. Prerequisite 2nd, 3rd, or 4th year Engineering student
Course Description: Covers the essential environments and tools for data engineering. Topics include Linux, software development and testing, database design and construction, creation and deployment of containers, and data load/transform/extraction.
Course Description: Moves deeper into current best practices around data engineering in industry. Topics will review basic data collection, ingestion, processing, and storage, moving beyond to data governance, security, pipeline orchestration, monitoring and maintenance, optimization, and documentation. Relies heavily on DevOps principles of automation, continuous improvement, and an understanding of the entire software/data lifecycle.
Course Description: The principle objective of this course is to instruct graduate students on fundamental mathematical, modeling, and computational principles of relevance in biomedical engineering. The course is structured to provide lecture material, biomedical examples that use modeling and computation, and homework/exams that strengthen the mathematical and computational foundation of the graduate students. Prerequisites: 1. BME 6101: Physiology I (or equivalent) 2. SEAS grad student status 3. Some previous exposure to probability-statistics, Fourier analysis, and linear systems 4. Or instructor permission
Course Description: A first-level graduate course covering a topic not normally covered in the graduate course offerings. The topic will usually reflect new developments in the electrical and computer engineering field. Offering is based on student and faculty interests. Prerequisite: Instructor permission.
0 results
No professors matched your search.