Your feedback has been sent to our team.
2.23
4.19
3.22
Fall 2024
Biochemistry underlies nearly every biological process, from environmental science to medicine. When living systems are in chemical and energetic balance, organisms thrive. When they're out of balance, as in disease or unpredictable environments, life is compromised. This course will explain how simple chemical and physical principles apply to the major classes of biological macromolecules that maintain life.Prerequisite: BIOL 2010 or BIOL 2100 or BME 2104 and BIOL 2020 or BIOL 2040 and either CHEM 2410 or CHEM 1820
2.47
3.31
3.31
Fall 2025
This course, the first in a two-course sequence, is an introduction to the structure and function of the human body. Review of the structure and physiology of cells and tissues leads to in-depth study of the musculoskeletal and nervous systems. Control mechanisms and the contributions of each system to overall homeostasis are emphasized.
2.56
3.17
3.43
Spring 2025
This course, the second in a two-course sequence, examines structures and functions of the endocrine, cardiovascular, urogenital, respiratory, renal, gastrointestinal and reproductive systems. Control mechanisms and functional integration of these systems in overall homeostasis is emphasized.
2.67
3.00
3.15
Spring 2025
This is an introductory course that takes a multidisciplinary approach to studying the relationship between plants and people. The course focuses on providing students foundational information on the growth, development, physiology and genetics of plants and explores the connection between plants and people by looking at the use of plants as sources of food, shelter, medicinals and manufactured goods.
2.92
4.05
2.98
Fall 2025
What makes humans different from fruit flies? Why does your brain have neurons and not liver cells? This course is all about the answer to these questions: It's the genes! This course covers the chemical make-up of genes, how they're passed on through generations, how they're expressed and how that expression is regulated, how disruption in the structure and expression of genes arise and how those disruptions lead to cellular defects and disease. Prerequisite: Must have completed BIOL 2010 or BIOL 2100 or BME 2104 and either CHEM 1410 or CHEM 1810 or CHEM 1610. BIOL 3010 is not repeatable.
3.00
1.00
3.97
Fall 2025
This course begins with discussion of pharmacological principles and normal function of the nervous and endocrine system. As we continue, we will describe how exogenous substances derived from plants (like drugs) impact the nervous system to restore normal or near-normal function, or alter normal function, in humans. The use of agents from plants in the alleviation of depression and anxiety will be emphasized.
3.10
4.20
3.06
Fall 2024
Introduces biological timekeeping as used by organisms for controlling diverse processes, including sleep-wakefulness cycles, photoperiodic induction and regression, locomotor rhythmicity, eclosion rhythmicity, and the use of the biological clock in orientation and navigation. Prerequisite: BIOL 3000 or 3010 or 3020
3.13
3.63
2.88
Fall 2025
Examines the mechanisms of evolutionary change, with an emphasis on the genetic and evolutionary principles needed to understand the diversification of life on earth. Covers the ecology of individuals and population dynamics. Major topics include the genetics and ecology of natural populations, adaptation, molecular evolution and macroevolution, and the application of evolutionary and ecological concepts to conservation biology. Required for all Biology majors. Prerequisite: Must have completed BIOL 2200. BIOL 3020 is not repeatable.
3.20
3.79
3.15
Fall 2025
BIOL 2200 is one of two semester courses that together provide an intensive introduction to biology for prospective Biology majors and pre-health (med, vet, dental) students. This course focuses on evolution, physiology and development. Lecture topics and concepts are reinforced and extended during once-weekly laboratory/small group discussions. The Introductory courses are not sequenced and may be taken in either order.
3.33
4.00
3.38
Spring 2025
Genome databases contain a wealth of information that enable us to answer myriad questions in biology. Working with genome data requires foundational knowledge in molecular genetic concepts, as well as technical knowledge of how to read and analyze sequence data. This class will provide students with the skills to understand genomic data and its applications in biology and medicine.
No course sections viewed yet.