Your feedback has been sent to our team.
—
—
—
Spring 2026
Emphasis on the functions and integration of human nervous, cardiovascular, respiratory, digestive, and renal systems in maintaining homeostasis, and by extension, health. Normal function, from cells to organs, of each system provides a foundation for study of mechanisms that lead to dysfunction and the identification of potential therapeutic targets and strategies.
—
—
3.84
Spring 2026
In this course, we'll dive into our current understanding of the evolution and ecology of parasitic interactions through primary literature, modeling, and experimental design. Throughout, we will focus on generating and testing hypotheses, evaluating theoretical models with evidence, drawing parallels between diverse domains of life, and connecting evolutionary and ecological ideas to today's past, present, and future epidemics.
—
—
3.95
Fall 2025
Microbes rule. This course will teach microbial genomics using the cutting edge next-generation DNA sequencing technology and its applications to study microbes around us. Topics covered include microbial genomics, DNA sequencing and sequence analysis.
—
—
3.87
Fall 2025
The evolutionary history of a population can be studied by examining patterns of genetic variation among individuals. Using information about genetic variation, we can infer historical evolutionary events like migration and adaptation. In this lab course, you will learn to utilize genomic data to conduct evolutionary inference. We will learn fundamentals of population genetics, bioinformatic skills, and research methods applied to real short-read sequencing data.
—
—
—
Fall 2025
This course will provide an in-depth exploration of the field of regenerative biology, focusing on the molecular and cellular mechanisms underlying tissue regeneration and repair in animals. We will explore the cellular basis of different types of regeneration and search for shared molecular mechanisms. With an eye towards the future, we¿ll also explore the implications for advancing regenerative medicine.
—
—
—
Spring 2026
This course introduces students to foundational and modern neuroscience research techniques through laboratory investigations. Neuroscience is explored at the molecular, systems, and behavioral level. Topics covered include neuroanatomy, electrophysiology, biopotentials, development, histology, and microscopy. An emphasis is placed on structure-function relationships, experimental design, and application of techniques in research.
—
—
3.76
Fall 2025
This course for advanced undergrads will focus mainly on research about Alzheimer's disease, and will meet once/week for 3 hours. The first 3 weeks will be primarily didactic, and the remainder of the course will be a "journal club" in which primary research paper discussions will be led by teams of students. Assessments will be based on how well students lead and participate in discussions, and on exams.
—
—
3.91
Spring 2026
This course focuses on how relatively simple model systems provide the clues as to how certain synaptic connections form and lead to specific behaviors. This will be followed by discussion of how this knowledge can be applied to the understanding and treatment of human neural disorders. 25% of the course is standard lectures and the rest, student-led discussion of primary literature. Prereqs: BIOL 3000 & BIOL 3010; BIOL 3050 or PSYC 2200 or 3200
—
—
3.87
Fall 2025
Periodic seminar offerings to provide intensive study of the scientific literature in focused areas of Biology.
—
—
4.00
Summer 2024
The extraordinary diversity of the southern Appalachians will be used to explore the world of plants. We will visit unique mountain habitats to study the different species assemblages in these ecologically wide-ranging sites. Based upon our observations and analyses, we will critique contemporary views of the most effective conservation units (individual, population, species, family, habitat) and the methods used to achieve conservation goals.
No course sections viewed yet.