Your feedback has been sent to our team.
4.40
4.16
3.01
Spring 2025
Studies the genetics and cell biology of the vertebrate immune system, with a focus on adaptive immunity. Classic and current experimental systems are emphasized. Prerequisite: Must have completed or be currently taking BIOL 2010 or BIOL 2100 or BME 2104
4.41
3.73
3.12
Fall 2025
Analyzes the concepts of general neurobiology, including basic electrophysiology and electrochemistry, origin of bioelectric potentials, sensory, motor, integrative and developmental neurobiology, and conceptual models of simple learning. Prerequisites: BIOL 2100 (or BME 2104) and BIOL 2200. Recommended: Prior completion of BIOL 3000
4.44
3.33
3.60
Fall 2025
New course in the subject of biology.
4.83
2.00
3.95
Spring 2025
This course addresses the impact of the human genome project on understanding human genetic disease, focusing on the invaluable role for animal models of diseases in augmenting evaluation of genomic information to develop strategies for precision medicine. Animal models are an invaluable asset in reaching this goal because they allow experimental manipulations that go far beyond what is possible in human patients.
5.00
3.00
—
Spring 2025
One of the most important characteristics of life is the ability to reproduce. In order to produce new life, multicellular organisms evolved specialized cells whose only purpose is reproduction ¿ the germ cells. Germ cells are the only cells that persist from one generation to the next and are often called immortal. We will decipher how these totipotent stem cells function in order to faithfully create the next generation of organisms.
5.00
4.00
3.67
Fall 2024
From plants to humans, hormones shape various aspects of organismal form and behavior over contemporary and evolutionary time. Delve into endocrine pathways, hormones' influence on development, and their role in coordinating responses to environmental and physiological stimuli. Gain a deep understanding endocrinology theories, concepts, and methods, and the ability to critically evaluate hormonal impacts on ecosystem and human health.
5.00
3.00
—
Summer 2025
MLBS sits on the Eastern Continental Divide providing an incredible diversity of freshwater habitats. Proficiency in ichthyology will be developed through field trips and lab work. Themes include: fish ID; patterns and drivers of diversity; interactions on individual, population, community and ecosystem levels; evolution; and influences of human activities. Students will design and conduct a research project and present at a class symposium.
—
—
—
Spring 2025
Emphasis on the functions and integration of human nervous, cardiovascular, respiratory, digestive, and renal systems in maintaining homeostasis, and by extension, health. Normal function, from cells to organs, of each system provides a foundation for study of mechanisms that lead to dysfunction and the identification of potential therapeutic targets and strategies.
—
—
3.84
Fall 2024
In this course, we'll dive into our current understanding of the evolution and ecology of parasitic interactions through primary literature, modeling, and experimental design. Throughout, we will focus on generating and testing hypotheses, evaluating theoretical models with evidence, drawing parallels between diverse domains of life, and connecting evolutionary and ecological ideas to today's past, present, and future epidemics.
—
—
3.95
Fall 2025
Microbes rule. This course will teach microbial genomics using the cutting edge next-generation DNA sequencing technology and its applications to study microbes around us. Topics covered include microbial genomics, DNA sequencing and sequence analysis.
No course sections viewed yet.