Your feedback has been sent to our team.
4.21
2.19
3.91
Fall 2025
The goal of this course is to provide an original, unknown outcome research experience in developmental biology. After training in basic methods and descriptions of selected research problems, students form teams and investigate a problem of their choosing. Team members work together in the lab, but each writes an independent research proposal, a notebook, and a final project report on which they are graded. Prerequisite: BIOL 3000 or 3010.
5.00
4.00
3.67
Fall 2024
From plants to humans, hormones shape various aspects of organismal form and behavior over contemporary and evolutionary time. Delve into endocrine pathways, hormones' influence on development, and their role in coordinating responses to environmental and physiological stimuli. Gain a deep understanding endocrinology theories, concepts, and methods, and the ability to critically evaluate hormonal impacts on ecosystem and human health.
3.83
2.75
3.50
Fall 2024
The mathematical foundations of population dynamics and species interactions as applied to population and community ecology and problems in conservation biology. One semester of calculus is recommended. Prerequisite: BIOL 3020 or EVSC 3200
4.20
3.80
3.21
Fall 2024
Despite the many benefits of asexual reproduction, the vast majority of eukaryotic organisms reproduce sexually. How sex evolved, and how it persists despite its many associated costs, are major unanswered questions in biology. We will explore the diversity of sexual reproduction and associated evolutionary phenomena with a focus on critically evaluating current research and theory in this field.Prerequisite: BIOL 3020 or permission from Instructor
3.10
4.20
3.06
Fall 2024
Introduces biological timekeeping as used by organisms for controlling diverse processes, including sleep-wakefulness cycles, photoperiodic induction and regression, locomotor rhythmicity, eclosion rhythmicity, and the use of the biological clock in orientation and navigation. Prerequisite: BIOL 3000 or 3010 or 3020
4.31
3.71
3.39
Fall 2024
Focuses on the fundamental knowledge about organization, expression, and inheritance of the human genome. Reviews classical Mendelian genetics and human genetic (pedigree) analysis. Emphasizes understanding human genetics in molecular terms. Includes gene mapping procedures, methodologies for identifying genes responsible for inherited diseases, the molecular basis of several mutant (diseased) states, the human genome project, and discussions about genetic screening and gene therapy. Prerequisite: BIOL 3010.
3.67
3.00
3.82
Spring 2025
This course uses a case study approach to examine cellular processes that underlie diverse diseases and to identify the relevant molecular components that have been validated or that may serve as new therapeutic targets. We will discuss both established, transformative drugs as well as novel, emerging therapies under development. We will consider socio-economic and demographic issues that impact the accessibility and affordability of new drugs.
4.31
2.33
3.70
Fall 2025
This laboratory course provides hands-on experiences with experimental approaches used to study animal behavior. The laboratory exercises explore visual and auditory sensory perception, biological clock, reproductive and aggressive behaviors using actively behaving animals such as hamsters, cichlid fish, crickets and electric fish. Students are given opportunities to design hypothesis-testing experiments in some laboratories.
4.17
3.50
3.27
Spring 2025
This two-lectures-per-week course explores the basic principles of sensory neurobiology. The course consists of four modules. Each module represents one of the senses & consists of an introductory lecture, one or several lectures that will delve into the details of that sense, a current topic lecture on some recent finding, & finally, a guest lecture from a UVa researcher. Completion of BIOL 3050 or PSYC 2200 or PSYC 3200 strongly recommended.
—
—
3.91
Spring 2025
This course focuses on how relatively simple model systems provide the clues as to how certain synaptic connections form and lead to specific behaviors. This will be followed by discussion of how this knowledge can be applied to the understanding and treatment of human neural disorders. 25% of the course is standard lectures and the rest, student-led discussion of primary literature. Prereqs: BIOL 3000 & BIOL 3010; BIOL 3050 or PSYC 2200 or 3200
No course sections viewed yet.