Your feedback has been sent to our team.
4.44
3.33
3.60
Fall 2025
New course in the subject of biology.
4.11
3.33
3.68
Spring 2025
By applying the principles of engineering to biology, students will design molecules, viruses, and cells to solve global problems in public health, food security, manufacturing, information processing, and the environment, changing the traditional question of 'How do cells work?' to 'How can I get a cell to work for me?' Students will gain experience in writing internationally competitive research project proposals. Prerequisite: Instructor Permission
4.17
3.50
3.27
Spring 2025
This two-lectures-per-week course explores the basic principles of sensory neurobiology. The course consists of four modules. Each module represents one of the senses & consists of an introductory lecture, one or several lectures that will delve into the details of that sense, a current topic lecture on some recent finding, & finally, a guest lecture from a UVa researcher. Completion of BIOL 3050 or PSYC 2200 or PSYC 3200 strongly recommended.
3.71
3.63
3.16
Spring 2025
Are developmental biology and regenerative biology one and the same? Throughout this course, we will emphasize both classical and modern experimental approaches that have been used to unravel the genetic, molecular and celluar mechanisms of development. Additionally, the practical value of understanding development is enormous, and the relationship between embryology and clinical applications will be a theme that runs throughout the course.
3.13
3.63
2.88
Fall 2025
Examines the mechanisms of evolutionary change, with an emphasis on the genetic and evolutionary principles needed to understand the diversification of life on earth. Covers the ecology of individuals and population dynamics. Major topics include the genetics and ecology of natural populations, adaptation, molecular evolution and macroevolution, and the application of evolutionary and ecological concepts to conservation biology. Required for all Biology majors. Prerequisite: Must have completed BIOL 2200. BIOL 3020 is not repeatable.
4.31
3.71
3.39
Fall 2024
Focuses on the fundamental knowledge about organization, expression, and inheritance of the human genome. Reviews classical Mendelian genetics and human genetic (pedigree) analysis. Emphasizes understanding human genetics in molecular terms. Includes gene mapping procedures, methodologies for identifying genes responsible for inherited diseases, the molecular basis of several mutant (diseased) states, the human genome project, and discussions about genetic screening and gene therapy. Prerequisite: BIOL 3010.
4.41
3.73
3.12
Fall 2025
Analyzes the concepts of general neurobiology, including basic electrophysiology and electrochemistry, origin of bioelectric potentials, sensory, motor, integrative and developmental neurobiology, and conceptual models of simple learning. Prerequisites: BIOL 2100 (or BME 2104) and BIOL 2200. Recommended: Prior completion of BIOL 3000
3.20
3.79
3.15
Fall 2025
BIOL 2200 is one of two semester courses that together provide an intensive introduction to biology for prospective Biology majors and pre-health (med, vet, dental) students. This course focuses on evolution, physiology and development. Lecture topics and concepts are reinforced and extended during once-weekly laboratory/small group discussions. The Introductory courses are not sequenced and may be taken in either order.
4.20
3.80
3.21
Fall 2024
Despite the many benefits of asexual reproduction, the vast majority of eukaryotic organisms reproduce sexually. How sex evolved, and how it persists despite its many associated costs, are major unanswered questions in biology. We will explore the diversity of sexual reproduction and associated evolutionary phenomena with a focus on critically evaluating current research and theory in this field.Prerequisite: BIOL 3020 or permission from Instructor
3.76
3.87
3.13
Fall 2025
BIOL 2100 is one of two semester courses that together provide an intensive introduction to biology for prospective Biology majors and pre-health (med, vet, dental) students. This course focuses on the fundamentals of cell biology and genetics with an emphasis on classical and modern experimental approaches. Lecture topics and concepts are reinforced and extended during once-weekly laboratory/small group discussions.
No course sections viewed yet.