Your feedback has been sent to our team.
—
—
3.84
Fall 2024
In this course, we'll dive into our current understanding of the evolution and ecology of parasitic interactions through primary literature, modeling, and experimental design. Throughout, we will focus on generating and testing hypotheses, evaluating theoretical models with evidence, drawing parallels between diverse domains of life, and connecting evolutionary and ecological ideas to today's past, present, and future epidemics.
4.00
2.00
3.86
Spring 2025
Animals are incredibly diverse, but they all evolved from the same single-celled ancestor that lived hundreds of millions of years ago. This course takes a cell-biological approach to explore key questions in animal evolution such as the origins of multicellularity and differentiation. Students will gain a cutting-edge perspective on current research that integrates cell, developmental, and evolutionary biology to explore animal origins.
4.83
2.00
3.95
Spring 2025
This course addresses the impact of the human genome project on understanding human genetic disease, focusing on the invaluable role for animal models of diseases in augmenting evaluation of genomic information to develop strategies for precision medicine. Animal models are an invaluable asset in reaching this goal because they allow experimental manipulations that go far beyond what is possible in human patients.
5.00
3.00
—
Spring 2025
One of the most important characteristics of life is the ability to reproduce. In order to produce new life, multicellular organisms evolved specialized cells whose only purpose is reproduction ¿ the germ cells. Germ cells are the only cells that persist from one generation to the next and are often called immortal. We will decipher how these totipotent stem cells function in order to faithfully create the next generation of organisms.
—
—
3.95
Fall 2025
Microbes rule. This course will teach microbial genomics using the cutting edge next-generation DNA sequencing technology and its applications to study microbes around us. Topics covered include microbial genomics, DNA sequencing and sequence analysis.
3.00
1.00
3.97
Fall 2025
This course begins with discussion of pharmacological principles and normal function of the nervous and endocrine system. As we continue, we will describe how exogenous substances derived from plants (like drugs) impact the nervous system to restore normal or near-normal function, or alter normal function, in humans. The use of agents from plants in the alleviation of depression and anxiety will be emphasized.
—
—
3.87
Fall 2025
The evolutionary history of a population can be studied by examining patterns of genetic variation among individuals. Using information about genetic variation, we can infer historical evolutionary events like migration and adaptation. In this lab course, you will learn to utilize genomic data to conduct evolutionary inference. We will learn fundamentals of population genetics, bioinformatic skills, and research methods applied to real short-read sequencing data.
—
—
—
Fall 2025
This course will provide an in-depth exploration of the field of regenerative biology, focusing on the molecular and cellular mechanisms underlying tissue regeneration and repair in animals. We will explore the cellular basis of different types of regeneration and search for shared molecular mechanisms. With an eye towards the future, we¿ll also explore the implications for advancing regenerative medicine.
3.53
2.40
3.40
Spring 2025
Introduces students to experimental approaches, including mammalian cell culture, gel electrophoresis, western blotting and immunofluorescence microscopy, that are used to study both normal and pathological processes at the level of individual cells. The biological theme of the course will be Alzheimer's disease (AD) and related neurodegenerative disorders. One laboratory lecture and one afternoon laboratory per week. Prerequisite: BIOL 3000
—
—
3.76
Fall 2025
This course for advanced undergrads will focus mainly on research about Alzheimer's disease, and will meet once/week for 3 hours. The first 3 weeks will be primarily didactic, and the remainder of the course will be a "journal club" in which primary research paper discussions will be led by teams of students. Assessments will be based on how well students lead and participate in discussions, and on exams.
No course sections viewed yet.