Your feedback has been sent to our team.
3.77
3.87
3.13
Spring 2026
BIOL 2100 is one of two semester courses that together provide an intensive introduction to biology for prospective Biology majors and pre-health (med, vet, dental) students. This course focuses on the fundamentals of cell biology and genetics with an emphasis on classical and modern experimental approaches. Lecture topics and concepts are reinforced and extended during once-weekly laboratory/small group discussions.
3.22
3.78
3.15
Spring 2026
BIOL 2200 is one of two semester courses that together provide an intensive introduction to biology for prospective Biology majors and pre-health (med, vet, dental) students. This course focuses on evolution, physiology and development. Lecture topics and concepts are reinforced and extended during once-weekly laboratory/small group discussions. The Introductory courses are not sequenced and may be taken in either order.
3.65
4.03
2.73
Spring 2026
Examines the fundamental principles of eukaryotic cell biology at the molecular level. Topics include: structure and function of the plasma membrane, transport of small molecules, ions and macromolecular complexes across membranes, protein trafficking, the cytoskeleton, signal transduction pathways, and the control of cell division and cellular proliferation. Prerequisites: completion of BIOL 2100 or BME 2104 and either CHEM 1410,1420, or CHEM 1810,1820. NOT repeatable if passing grade received.
2.89
4.07
2.98
Spring 2026
What makes humans different from fruit flies? Why does your brain have neurons and not liver cells? This course is all about the answer to these questions: It's the genes! This course covers the chemical make-up of genes, how they're passed on through generations, how they're expressed and how that expression is regulated, how disruption in the structure and expression of genes arise and how those disruptions lead to cellular defects and disease. Prerequisite: Must have completed BIOL 2100 or BME 2104 and either CHEM 1410 or CHEM 1810. BIOL 3010 is not repeatable.
2.23
4.19
3.22
Spring 2026
Biochemistry underlies nearly every biological process, from environmental science to medicine. When living systems are in chemical and energetic balance, organisms thrive. When they're out of balance, as in disease or unpredictable environments, life is compromised. This course will explain how simple chemical and physical principles apply to the major classes of biological macromolecules that maintain life.Prerequisite: BIOL 2010 or BIOL 2100 or BME 2104 and BIOL 2020 or BIOL 2040 and either CHEM 2410 or CHEM 1820
3.85
3.56
3.16
Spring 2026
Are developmental biology and regenerative biology one and the same? Throughout this course, we will emphasize both classical and modern experimental approaches that have been used to unravel the genetic, molecular and celluar mechanisms of development. Additionally, the practical value of understanding development is enormous, and the relationship between embryology and clinical applications will be a theme that runs throughout the course.
2.67
3.00
3.15
Spring 2026
This is an introductory course that takes a multidisciplinary approach to studying the relationship between plants and people. The course focuses on providing students foundational information on the growth, development, physiology and genetics of plants and explores the connection between plants and people by looking at the use of plants as sources of food, shelter, medicinals and manufactured goods.
4.41
4.15
3.01
Spring 2026
Studies the genetics and cell biology of the vertebrate immune system, with a focus on adaptive immunity. Classic and current experimental systems are emphasized. Prerequisite: Must have completed or be currently taking BIOL 2010 or BIOL 2100 or BME 2104
3.33
4.00
3.38
Spring 2026
Genome databases contain a wealth of information that enable us to answer myriad questions in biology. Working with genome data requires foundational knowledge in molecular genetic concepts, as well as technical knowledge of how to read and analyze sequence data. This class will provide students with the skills to understand genomic data and its applications in biology and medicine.
4.24
3.14
3.17
Spring 2026
Microbes rule. In this course, we will explore how microbes rule the world and how genomics has revolutionized the way we study them. Fundamental principles of microbiology will be introduced. Topics include microbial cell structure, metabolism, genetics, diversity, evolution and infectious disease. Laboratory work will complement lecture topics and cover the core themes & concepts, as recommended by the American Society of Microbiology.
No course sections viewed yet.