Your feedback has been sent to our team.
2.28
4.34
3.26
Spring 2025
This is an introductory course on modeling probabilistic systems. The emphasis will be on model formulation and probabilistic analysis. Topics to be covered include general stochastic processes, discrete and continuous time Markov chains, the Poisson Process, Non-Stationary Poisson Processes, Markov Decision Processes, Queueing Theory, and other selected topics. Prerequisite: APMA 3100 or MATH 3100.
2.33
4.00
3.40
Spring 2025
A design project extending throughout the fall and spring semesters. Involves the study of a real-world, open-ended situation, including problem formulation, data collection, analysis and interpretation, model building and analysis, and generation of solutions. Students work on the same project with the same team in SYS 4053 and 4054 in subsequent semesters. Pre-requisite: SYS 4053
2.47
3.60
3.41
Spring 2025
A first course in the theory & practice of discrete-event simulation. Monte Carlo methods, generating random numbers & variates, spreadsheet add-ins & applications, sampling distributions & confidence intervals, input analysis & distribution fitting. Discrete-event dynamic systems, modeling, simulation logic & data structures, output analysis, model verification & validation, comparing alternative systems, simulation optimization, case studies. Prerequisite: CS 2100, APMA 3100, and APMA 3120
2.62
3.00
3.34
Fall 2025
This course shows how to use linear statistical models for analysis in engineering and science. The course emphasizes the use of regression models for description, prediction, and control in a variety of applications. Building on multiple regression, the course also covers principal component analysis, analysis of variance and covariance, logistic regression, time series methods, and clustering. Prerequisite: CS 2100, APMA 3100 and APMA 3120.
2.75
2.25
3.62
Spring 2025
This course examines the lifecycle of engineered systems (ES) and the public policies developed to regulate them. It covers risks, costs, benefits, and equity as common evaluation criteria for ES and their regulatory policies. It uses case studies and basic tools of decision analysis to critically evaluate the tradeoffs involved in developing and regulating ES through public policy. Pre-reqs: (STS 1500 or ENGR 1020 or ENGR 2595 - Engineering Foundations II) and (APMA 1110 or MATH 1320), and (CHEM 1410 or CHEM 1810), and (PHYS 1425 or PHYS 1420 or PHYS 1710).
2.92
3.00
3.47
Fall 2025
An introduction to the fundamentals for the analysis, design and evaluation of human-centered systems. For example, user interaction can be designed to leverage the strengths of people in controlling automation and analyzing data. Course topics include Task, User and Work Domain Analysis, User Interface Design Principles, Human Cognition and Information Processing (Top-Down Design), Human Perception (Bottom-Up Design), and Usability Testing. Corequisite: SYS 2001.
3.00
4.00
3.57
Fall 2024
Covers basic stochastic processes with emphasis on model building and probabilistic reasoning. The approach is non-measure theoretic but otherwise rigorous. Topics include a review of elementary probability theory with particular attention to conditional expectations; Markov chains; optimal stopping; renewal theory and the Poisson process; martingales. Applications are considered in reliability theory, inventory theory, and queuing systems. Prerequisite: APMA 3100, 3120, or equivalent background in applied probability and statistics.
3.08
4.00
3.50
Fall 2025
Detailed study of a selected topic determined by the current interest of faculty and students. Offered as required. Prerequisite: As specified for each offering.
3.15
4.01
3.35
Fall 2025
Introduction to deterministic optimization models: theory, algorithms, and applications. Coverage begins with highly structured network optimization models and ends with unstructured linear optimization models. Applications include (1) telecommunications network planning and design, (2) design and utilization of transportation and distribution networks, and (3) project management and scheduling. Corequisite: SYS 2001 and APMA 3080.
3.22
2.67
3.58
Fall 2025
"This course is an introduction to the theory of the industrial organization (from a game-theoretic perspective) and its applications to industries with strong engineering content (electricity, telecommunications, software & hardware etc.) Topics include: congestion pricing in networks, pricing and efficiency in electricity markets, planned obsolescence in software development, ""network"" effects and the dynamics of technology adoption etc. Prerequisites: ECON 2010 and a course in probability (either APMA 3100, APMA 3110, or Math 3100)."
No course sections viewed yet.