Your feedback has been sent to our team.
3.08
4.00
3.50
Fall 2025
Detailed study of a selected topic determined by the current interest of faculty and students. Offered as required. Prerequisite: As specified for each offering.
4.11
1.00
3.86
Fall 2025
Detailed study of a selected topic determined by the current interest of faculty and students. Prerequisite: As specified for each offering.
—
—
—
Fall 2025
Independent study or project research under the guidance of a faculty member. Offered as required. Prerequisite: As specified for each offering.
5.00
4.00
3.81
Fall 2025
Detailed study of a selected topic, determined by the current interest of faculty and students. Offered as required.
4.67
2.00
3.62
Fall 2025
An integrated introduction to systems methodology, design, and management. An overview of systems engineering as a professional and intellectual discipline, and its relation to other disciplines, such as operations research, management science, and economics. An introduction to selected techniques in systems and decision sciences, including mathematical modeling, decision analysis, risk analysis, and simulation modeling. Elements of systems management, including decision styles, human information processing, organizational decision processes, and information system design for planning and decision support. Emphasizes relating theory to practice via written analyses and oral presentations of individual and group case studies. Prerequisite: Admission to the graduate program.
—
—
3.62
Fall 2025
This course is an introduction to theory and application of mathematical optimization. The goal of this course is to endow the student with a) a solid understanding of the subject's theoretical foundation and b) the ability to apply mathematical programming techniques in the context of diverse engineering problems. Topics to be covered include a review of convex analysis (separation and support of sets, application to linear programming), convex programming (characterization of optimality, generalizations), Karush-Kuhn-Tucker conditions, constraint qualification and Lagrangian duality. The course closes with a brief introduction to dynamic optimization in discrete time. Prerequisite: Two years of college mathematics, including linear algebra, and the ability to write computer programs.
—
—
—
Fall 2025
Introduces modeling, analysis, and control of dynamic systems, using ordinary differential and difference equations. Emphasizes the properties of mathematical representations of systems, the methods used to analyze mathematical models, and the translation of concrete situations into appropriate mathematical forms. Primary coverage includes ordinary linear differential and difference equation models, transform methods and concepts from classical control theory, state-variable methods and concepts from modern control theory, and continuous system simulation. Applications are drawn from social, economic, managerial, and physical systems. Cross-listed as MAE 6620. Prerequisite: APMA 2130 or equivalent.
4.67
3.00
3.73
Fall 2025
Data mining describes approaches to turning data into information. Rather than the more typical deductive strategy of building models using known principles, data mining uses inductive approaches to discover the appropriate models. These models describe a relationship between a system's response and a set of factors or predictor variables. Data mining in this context provides a formal basis for machine learning and knowledge discovery. This course investigates the construction of empirical models from data mining for systems with both discrete and continuous valued responses. It covers both estimation and classification, and explores both practical and theoretical aspects of data mining. Prerequisite: SYS 6021, SYS 4021, or STAT 5120.
—
—
3.56
Fall 2025
This course shows how to use linear statistical models for analysis in engineering and science. The course emphasizes the use of regression models for description, prediction, and control in a variety of applications. Building on multiple regression, the course also covers principal component analysis, analysis of variance and covariance, logistic regression, time series methods, and clustering. Course lectures concentrate on theory and practice.
—
—
3.83
Fall 2025
This course is an introduction to the theory of the industrial organization (from a game-theoretic perspective) and its applications to industries with strong engineering content (electricity, telecommunications, software and hardware, etc.). Topics include: congestion pricing in networks, pricing and efficiency in electricity markets, planned obsolescence in software development, "networks" effects and the dynamics of technology adoption.Prerequisite: ECON 2010, APMA 3100 or 3110.