Your feedback has been sent to our team.
1.87
3.40
3.03
Spring 2025
This course investigates a major source of human impact upon the Earth - energy consumption to fuel human activity. The course a) provides a cross-disciplinary perspective on the challenge of human-centered energy use, b) explains the historical origins of today's energy systems, c) describes current energy systems, d) examines the components of sustainable energy systems, and e) considers keys to their deployment.
3.17
3.00
3.57
Spring 2025
This course engages students with the idea that success in posing and solving engineering problems requires attention to the social dimensions of professional endeavors and practice. STS theories and methods are applied to student thesis projects. Students produce a prospectus for the undregraduate thesis project. Students must be in residence to take this course. Students are not permitted to take STS 4500 and STS 4600 simultaneously. Prereq: STS 2600 and STS 2000 or STS 3000 level (or writing requirement equivalent) course. 4th Year Engineering or by instructor permission for early graduation.
3.58
2.81
3.57
Spring 2025
This course focuses on ethical issues in engineering. The key theme is that ethics is central to engineering practice. The professional responsibilities of engineers are examined. Students produce an STS Research paper linked to their technical thesis project and complete all of the requirements for the undergraduate thesis. Students must be in residence to take this course. Students are not permitted to take STS 4500 and STS 4600 simultaneously. Prerequisites: STS 4500.
3.36
2.35
3.58
Spring 2025
This course invites students to explore the implications of STS core concepts within a specific topical or disciplinary area. The course explores the social and global context of engineering, science and technology. Although writing and speaking skills are emphasized, more attention is given to course content and the students' analytical abilities.
3.00
3.20
3.65
Spring 2025
Examines the development of public policies aimed at promoting and regulating science and technology. Topics include historical evolution of the federal government's involvement in science policy; the players, organizations, and agencies who make science policy; the reasons the government funds the research it does; how science and technology is regulated by the government. Prerequisites: STS 1500 or equivalent.
—
—
3.66
Spring 2025
This Socratic course prepares undergrads for internships in science, engineering and technology (SET) in Washington, DC. A core objective is to increase knowledge, oral and written skills for assessing SET and their impacts on public policy. Engineering students accepted into the SEAS Policy Internship Program in Science and Technology must take the course. Students from Batten School, the College and other schools are also welcome to enroll.
3.07
1.80
3.83
Spring 2025
The mission of UVA - SEAS is "to make the world a better place by creating and disseminating knowledge and by preparing engineering leaders to solve global challenges." In alignment with that mission, this course seeks to equip undergraduates with knowledge, understanding, and practice to prepare them for ethical leadership now, as students, and for their future as engineering leaders. Prerequisite 2nd, 3rd, or 4th year Engineering student
—
—
—
Spring 2025
Development of knowledge and skills needed to conduct qualitative research. Grounded in science and technology studies (STS), feminism, anthropology, and ethnic studies, students will engage questions of authority, representation, critical consciousness, and power. Lays the intellectual groundwork for students to use research methods as tools for catalyzing reflexivity in scientific and technological disciplines. Prerequisite: STS 2101 or receive permission from the instructor.
No course sections viewed yet.