• MAE 3710

    Mechanical Systems
     Rating

    3.06

     Difficulty

    4.35

     GPA

    2.70

    Last Taught

    Fall 2025

    Presents general concepts of dynamical systems modeling and provides mathematical tools to develop and analyze models that describe input/output behaviors of physical systems. Topics include basic elements of mechanical systems, transfer functions, frequency response, stability and poles, resonance and natural frequency, transient and time constant, steady state and DC gain, block diagrams. Prerequisites: MAE 2320 and APMA 2130

  • MAE 2320

    Dynamics
     Rating

    1.79

     Difficulty

    4.00

     GPA

    2.98

    Last Taught

    Fall 2025

    Kinematic and kinetic aspects of motion modeling applied to rigid bodies and mechanisms. Focus on free-body-analysis. Use of work-energy and impulse-momentum motion prediction methods. Use of Cartesian and simple non-Cartesian coordinate systems. Rotational motion, angular momentum, and rotational kinetic-energy modeling; body mass rotational moment of inertia. Relative-velocity and acceleration. Prerequisite: MAE 2300 or CE 2300

  • MAE 2100

    Thermodynamics
     Rating

    3.50

     Difficulty

    3.36

     GPA

    3.06

    Last Taught

    Fall 2025

    Includes the formulation of the first and second laws of thermodynamics; energy conservation; concepts of equilibrium, temperature, energy, and entropy; equations of state; processes involving energy transfer as work and heat; reversibility and irreversibility; closed and open systems; and cyclic processes. Prerequisite: APMA 1110 or MATH 1320

  • MAE 3310

    Aerospace Structures
     Rating

    2.52

     Difficulty

    4.00

     GPA

    3.06

    Last Taught

    Fall 2025

    Analyzes the design of elements under combined stresses; bending and torsional stresses in thin-walled beams; energy and other methods applied to statically determinate and indeterminate aerospace structural elements; buckling of simple structural members; and matrix and finite element analysis. Prerequisite: MAE 2310 or CE 2310.

  • MAE 3610

    Aerospace Materials
     Rating

    3.15

     Difficulty

    3.78

     GPA

    3.18

    Last Taught

    Fall 2025

    Introduces physical-chemical/microstructural and working mechanical properties, along with practical applications, for materials of wide interest on aerospace materials. Includes common metal, polymer, ceramic, and composite materials. Topics include standard materials names/designations; standard forming methods; usual strengthening means; temperature and temperature-history effects. Prerequisite CHEM 1410 or 1610 or CHEM 1810: Corequisite MAE 2310 or CE 2310.

  • MAE 2310

    Strength of Materials
     Rating

    4.38

     Difficulty

    3.15

     GPA

    3.18

    Last Taught

    Fall 2025

    Normal stress and strain, thermal strain, shear stress, shear strain; stress and strain transformations; Mohr's circle for plane stress and strain; stresses due to combined loading; axially loaded members; torsion of circular and thin-walled closed sections; statically indeterminate systems; deformation, strains and stresses in beams; beam deflections; column stability. Prerequisites: MAE 2300 or CE 2300

  • MAE 2300

    Statics
     Rating

    3.59

     Difficulty

    2.88

     GPA

    3.19

    Last Taught

    Fall 2025

    Basic concepts of mechanics, systems of forces and couples: equilibrium of particles and rigid bodies; analysis of structures: trusses, frames, machines; internal forces, shear and bending moment diagrams; distributed forces; friction, centroids and moments of inertia; introduction to stress and strain; computer applications. Cross-listed as CE 2300. Prerequisite: PHYS 1425 or PHYS 1420 or PHYS 1710

  • MAE 3210

    Fluid Mechanics
     Rating

    4.80

     Difficulty

    3.50

     GPA

    3.31

    Last Taught

    Fall 2025

    Introduction to fluid flow concepts and equations; characteristics of a fluid; mass and momentum conservation equations; fluid statics including buoyancy; Reynolds¿ Transport Theorem; Bernoulli's equation; viscous effects; Couette and Poiseuille flow; pipe and internal flow systems; fluid power systems; external boundary layers; flow over objects and associated lift and drag forces.  Corequisite: APMA 3140 or equivalent. 

  • MAE 6410

    Engineering Mathematics I
     Rating

     Difficulty

     GPA

    3.38

    Last Taught

    Fall 2025

    Review of ordinary differential equations, initial/boundary value problems. Linear algebra including systems of linear equations, matrices, eigenvalues, eigenvectors, diagonalization. Solution of partial differential equations that govern physical phenomena in science and engineering by separation by variables, superposition, Fourier series, variation of parameter, d'Alembert's solution. Cross-listed as APMA 6410. Prerequisite: Graduate standing.

  • MAE 4120

    Aerospace Propulsion
     Rating

    4.00

     Difficulty

    2.50

     GPA

    3.39

    Last Taught

    Fall 2025

    Aero- and thermodynamics of compressible fluids in air-breathing and rocket engines. Performance and cycle analysis of air-breathing engines, emphasizing turbojets, turbofans, turboprops, and ramjets; space propulsion including rocket dynamics, thrust chamber thermodynamics, and propulsion performance; performance of axial-flow and centrifugal compressors; turbines; and the matching of engine components. Prerequisite: MAE 3210 and MAE 2100.