Your feedback has been sent to our team.
—
—
4.00
Fall 2025
Individual survey, analysis, or apparatus project in the mechanical engineering field, concluded with the submission of a formal report. Subject originates with students wishing to develop a technical idea of personal interest. One hour conference per week. Prerequisite: Professional standing and prior approval by a faculty member who is project supervisor. Prerequisite: fourth year standing.
—
—
—
Fall 2025
Applied research in areas pertinent to aerospace engineering; conducted in close consultation with a departmental faculty advisor. Includes the design and construction of experiments, analysis, or the investigation of physical phenomena. The research may be related to ongoing faculty research and may be the topic of the senior thesis, but its scope must be significantly beyond that required for the thesis. Prerequisite Fourth yr. standing.
—
—
3.84
Fall 2025
A continuation of MAE 4610 that applies the design process to projects. Organization of design teams to work on specific semester-long design projects, including oral presentations and written reports. Pre- or Co-Requisite MAE 4610
—
—
4.00
Fall 2025
Mechatronics studies synergistic integration of mechanical engineering, electronics, and intelligent control in the design and manufacture of devices. Advanced Mechatronics follows MAE 4710 Mechatronics and dives deeper into circuits, electromechanical actuators, analog and digital signals, sensors, control algorithms, and microcontroller programming. An emphasis is placed on synergistically combining components to design and invent new products.
—
—
3.64
Fall 2025
Studies free and forced vibration of damped and undamped single and multiple degree of freedom systems. Includes modeling of discrete and continuous mass systems; application to vibration measurement instruments; analysis of concepts of modal analysis; concepts of linear stability; application to rotating machinery, Prerequisite MAE 2320, corequisite MAE 3710
—
—
—
Fall 2025
Analyze design requirements for and produce the conceptual design of an aircraft or a spacecraft. Includes synthesis of materials, structures, propulsion, flight mechanics, avionics, data handling and telemetry, stability and control, interior and external configuration, and all systems. Exploration of industrial design tools and program management strategies. Work in teams. Oral presentations and report writing. Design topics vary. Pre-requisite: 4th Year Standing in Aerospace Engineering
—
—
3.66
Fall 2025
Topics include free and forced vibrations of undamped and damped single- and multi-degree-of-freedom systems; modal analyses; continuous systems; matrix formulations; finite element equations; direct integration methods; and eigenvalue solution methods. Cross-listed as CE 6731. Prerequisite: Instructor permission.
—
—
3.78
Fall 2025
Mechanical design and build of a robot complete with sensors and actuators. Install Robot Operating System (ROS) and operate. Communication using ROS. Integration of microcontrollers and onboard computers. Object recognition. Simultaneous Localization and Mapping (SLAM) of the environment. Prerequisites: undergraduate dynamics; a programming course in Python, C++, or MATLAB; or instructor's permission
—
—
3.60
Fall 2025
Analyzes the theory and solution methods applicable to multi-dimensional compressible inviscid gas flows at subsonic, supersonic, and hypersonic speeds; similarity and scaling rules from small-petrurbation theory, introduction to transonic and hypersonic flows; method-of-characteristics applications to nozzle flows, jet expansions, and flows over bodies one dimensional non-steady flows; properties of gases in thermodynamic equilibrium, including kinetic-theory, chemical-thermodynamics, and statistical-mechanics considerations; dissociation and ionization process; quasi-equilibrium flows; and introduction to non-equilibrium flows. Prerequisite: MAE 6100.
—
—
3.38
Fall 2025
Review of ordinary differential equations, initial/boundary value problems. Linear algebra including systems of linear equations, matrices, eigenvalues, eigenvectors, diagonalization. Solution of partial differential equations that govern physical phenomena in science and engineering by separation by variables, superposition, Fourier series, variation of parameter, d'Alembert's solution. Cross-listed as APMA 6410. Prerequisite: Graduate standing.
No course sections viewed yet.