Your feedback has been sent to our team.
—
—
3.75
Spring 2025
The course aims to let students learn how to perform the analysis of the key kinetic processes, phase transformations, and the development of microstructure in real materials. We will study the atomic mechanisms of diffusion and the analytical and numerical methods to describe diffusion, kinetics of phase transformations and formation of complex microstructure as defined by the interplay of thermodynamics and kinetics of mass transfer. Pre-requisite: MSE 3050 or Instructor Permission
—
—
3.77
Fall 2025
The properties of any material help determine its ultimate usefulness to society. We can modify and manipulate properties by processing materials in different ways to control their structure. This class will examine mechanical, electrical and thermal properties of materials-what they mean, how they depend on structure, how to measure them, how to change them, and how to analyze the measurements. The course includes both a lecture and a lab. MSE 2090 required as a pre- or co-requisite.
—
—
3.82
Fall 2025
A study of special subjects related to developments in materials science under the direction of members of the staff. Offered as required under the guidance of a faculty member.
—
—
3.82
Fall 2025
Provides a fundamental understanding of a broad spectrum of techniques utilized to characterize properties of solids. The methods used to assess properties are described through integration of the basic principles and application. Methods more amenable to analysis of bulk properties are differentiated from those aimed at measurements of local/surface properties. MSE 3670 or equivalent, or a solid state materials/physics course.
4.11
1.67
3.91
Spring 2025
This course introduces state-of-the-art 3D printing and additive manufacturing techniques for metals, polymers, ceramics, and other materials. Students will be familiarized with both the fundamental science and industrial process, and learn critical limitations and current development efforts to resolve existing challenges. The course will develop a basic understanding for future engineers in working with existing additive manufacturing systems.
—
—
3.92
Fall 2025
Develops the student's literacy in aluminum and titanium alloys used in the aerospace and automotive industries. Considers performance criteria and property requirements from design perspectives. Emphasizes processing-microstructure development, and structure-property relationships. Prerequisite: Instructor permission.
—
—
—
Fall 2025
We discuss how soft matter science, a new and growing area of materials science and engineering, underpins everyday cooking and haute cuisine. The goal is to use cooking to educate students about the fundamental concepts and behavior of soft materials. The benefit is that students will be able to interrelate cooking techniques and recipes to physical, chemical, and biological transformations in food.
—
—
—
Fall 2024
This course introduces state-of-the-art additive manufacturing techniques for metallic materials, processing considerations, unresolved challenges and future opportunities. The course focuses on the underlying mechanisms such as energy-matter interaction, solidification, melt pool characteristics, defects, as well as the impact on resulting materials properties based on the processing-structure-property relationships. Prerequisite: MSE 3070
—
—
—
Fall 2024
This course provides a rigorous understanding of polymers and polymeric materials from molecule to macroscopic viewpoint. Topics covered include single polymers, solutions, melts, gels, and networks. The knowledge obtained is universal to all polymeric systems across various length scales and can be applied to both synthetic and biopolymers. Thus, this course can serve as general guidance for the design and development of soft (bio) materials. Pre-requisite: MSE 3050 or CHE 3316 or MAE 2100 or instructor permission
—
—
—
Spring 2025
Introduction to classical atomic-level simulation techniques (molecular dynamics, Metropolis and kinetic Monte Carlo). The basic concepts, capabilities and limitations of the methods are discussed, an overview of the state-of-the-art is provided, and examples of recent success stories are considered. The emphasis is on getting practical experience in designing and performing simulations. Prerequisite: 3rd year standing or instructor permission. Prerequisite: 3rd year standing or instructor permission.
No course sections viewed yet.