Your feedback has been sent to our team.
4.50
4.00
3.68
Fall 2025
Design, analysis and testing of an embedded computer system to meet specific needs, considering public health, safety and welfare as well as societal impacts. Tradeoff analysis and constraint satisfaction facilitated by the use of appropriate engineering analysis techniques. Semester-long team project develops physical prototype. Counts as major design experience for ECE students. Prerequisites (ECE 3430 or ECE 3502 ECR II) AND (ECE 3750 or ECE 2700) AND 4th year standing
—
—
3.68
Fall 2025
Optoelectronics merges optics and microelectronics. Optoelectronic devices and circuits have become core technologies for several key technical areas such as telecommunications, information processing, optical storage, and sensors. This course will cover devices that generate (semiconductor light emitting diodes and lasers), modulate, amplify, switch, and detect optical signals. Also included are solar cells, photonic crystals, and plasmonics.
—
—
3.70
Fall 2025
This course aims to provide an instruction to basic principles and tools for the analysis and design of control systems. It is intended for general graduate students in engineering and science. Topics to be covered include concepts, examples and designs of feedback, system modeling, linear and nonlinear dynamic behaviors, stability analysis, frequency domain analysis and design, transfer functions, PID control, and robustness of control systems.
—
—
3.72
Fall 2025
A first-level graduate course covering a topic not normally covered in the graduate course offerings. The topic will usually reflect new developments in the electrical and computer engineering field. Offering is based on student and faculty interests. Prerequisite: Instructor permission.
—
—
3.72
Fall 2025
A first graduate course in digital signal processing. Topics include discrete-time signals and systems, application of z-transforms, the discrete-time Fourier transform, sampling, digital filter design, the discrete Fourier transform, the fast Fourier transform, quantization effects and nonlinear filters. Additional topics can include signal compression and multi-resolution processing.
—
—
3.74
Spring 2025
A first-level graduate/advanced undergraduate course covering a topic not normally covered in the course offerings. The topic usually reflects new developments in the electrical and computer engineering field. Offering is based on student and faculty interests. Prerequisite: Instructor permission.
—
—
3.76
Fall 2025
A third-level undergraduate course covering a topic not normally covered in the course offerings. The topic usually reflects new developments in the electrical and computer engineering field. Offering is based on student and faculty interests.
—
—
3.76
Fall 2025
A fourth-level undergraduate course covering a topic not normally covered in the course offerings. The topic usually reflects new developments in the electrical and computer engineering field. Offering is based on student and faculty interests.
4.00
4.00
3.80
Fall 2025
Covers foundations of estimation theory and machine learning in a probabilistic modeling framework. Topics include frequentist and Bayesian estimation, analysis of estimators, linear regression, linear classification, graphical models, Markov models, sampling methods, and variational inference. Requires APMA 3100 or an equivalent course on Probability, familiarity with linear algebra, and Python programming.
4.53
3.20
3.82
Fall 2025
An embedded computer is designed to efficiently interact directly with its physical environment. This lab-based course explores architecture and interface issues relating to the design, evaluation and implementation of embedded systems . Topics include hardware and software organization, power management, digital and analog I/O devices, memory systems, timing and interrupts. Prerequisites: (ECE 2300 or ECE 2630) AND ECE 2330 AND CS 2130 all with a grade of a C- or better.
No course sections viewed yet.