Your feedback has been sent to our team.
2.22
3.33
3.63
Fall 2025
A fourth-level undergraduate course covering a topic not normally covered in the course offerings. The topic usually reflects new developments in the electrical and computer engineering field. Offering is based on student and faculty interests.
3.17
3.25
3.39
Spring 2025
Analyzes the principles of electromechanical energy conversion; three-phase circuit analysis; magnetic circuits and nonlinearity; transformers; electromagnetic sensing devices; DC, synchronous, stepper, and induction machines; equivalent circuit models; power electronic control of machines, switching regulators, Class D amplification. Laboratory, computer, and design exercises complement coverage of fundamental principles. Prerequisite: ECE 2660 or ECE 2600, ECE 3209 or PHYS 2415 or ECE 2200
3.33
1.50
3.87
Spring 2025
A third-level undergraduate course covering a topic not normally covered in the course offerings. The topic usually reflects new developments in the electrical and computer engineering field. Offering is based on student and faculty interests.
3.49
4.50
2.91
Fall 2025
Analyzes the basic laws of electromagnetic theory, beginning with static electric and magnetic fields, and concluding with dynamic E&M fields; plane wave propagation in various media; Maxwell's Laws in differential and integral form; electrical properties of matter; transmission lines, waveguides, and elementary antennas. Prerequisite: APMA 2130, ECE 2300, and ECE 2200 or equivalent.
3.58
4.00
3.19
Spring 2025
Introduces computer architecture and provides a foundation for the design of complex synchronous digital devices, focusing on: 1) Established approaches of computer architecture, 2) Techniques for managing complexity at the register transfer level, and 3) Tools for digital hardware description, simulation, and synthesis. Includes laboratory exercises. Prerequisites: ECE 2330 and CS 2130
3.59
3.56
3.22
Spring 2025
An introduction to the fundamental scientific principles governing information science and engineering. Topics include: definition of information; entropy; information representation in analog and digital forms; information transmission; spectrum and bandwidth; information transformation including data compression, filtering, encryption, and error correction; information storage and display; and large-scale information systems. Technologies for implementing information functions.
3.63
3.50
3.22
Spring 2025
A first course in communication networks for upper-level undergraduate students. Topics include the design of modern communication networks; point-to-point and broadcast network solutions; advanced issues such as Gigabit networks; ATM networks; and real-time communications. Cross-listed as CS 4457. Prerequisite: CS 3330 or ECE 3430
3.67
2.00
3.83
Spring 2025
A lab-based course that provides a hands-on way to learn about new developments in electrical and computer engineering fields. Topics include technologies or application areas that relate to ongoing design and research activities of faculty and students.
3.78
5.00
3.44
Spring 2025
Digital CMOS circuit design and analysis: combinational circuits, sequential circuits, and memory. Second order circuit issues. Global design issues: clocking and interconnect. Use of Cadence CAD tools. Team design of a significant VLSI chip including layout and implementation. Prerequisites: ECE 2330 and (ECE 2660 or ECE 2600)
4.00
4.00
3.59
Fall 2025
This course introduces electrical engineering theory and its application to circuits containing active and passive circuit elements. Content includes fundamental concepts such as voltage, current, power, energy and Ohm's Law as well as circuit analysis techniques including node-voltage and mesh-current based on circuit laws and theorems such as Kirchhoff Laws, source superposition, and equivalent circuits. Prerequisite: Must have completed (APMA 1110 or MATH 1320) AND (ENGR 1624 or ENGR 1410 or ENGR 2595 Topic Engineering Foundations I or ENGR 1010)
No course sections viewed yet.