• ECE 3103

    Solid State Devices
     Rating

    4.06

     Difficulty

    2.50

     GPA

    3.45

    Last Taught

    Spring 2026

    Analyzes the basics of band theory and atomic structure; charge-transport in solids; current voltage characteristics of semiconductor devices, including p-n junction diodes, bipolar transistors, Schottky diodes, and insulated-gate field-effect transistors; electron emission; and superconductive devices. Prerequisite: ECE 2300.

  • ECE 3660

    Microelectronic Circuits
     Rating

    4.40

     Difficulty

    3.00

     GPA

    3.49

    Last Taught

    Fall 2025

    Construction of electronic circuit design to specifications. Focuses on computer simulation, construction, and testing of designed circuits in the laboratory to verify predicted performance. Includes differential amplifiers, feedback amplifiers, multivibrators, and digital circuits. Three lecture and three laboratory hours. Prerequisite: ECE 2600 or ECE 2660

  • ECE 6660

    Analog Integrated Circuits
     Rating

     Difficulty

     GPA

    3.52

    Last Taught

    Spring 2026

    Design and analysis of analog integrated circuits. Topics include feedback amplifier analysis and design including stability, compensation, and offset-correction; layout and floor-planning issues associated with mixed-signal IC design; selected applications of analog circuits such as A/D and D/A converters, references, and comparators; and extensive use of CAD tools for design entry, simulation, and layout. Includes an analog integrated circuit design project. Prerequisite: ECE 3103 and 3632, or equivalent.

  • ECE 6711

    Probability and Stochastic Processes
     Rating

     Difficulty

     GPA

    3.52

    Last Taught

    Fall 2025

    Topics include probability spaces; random variables and vectors; and random sequences and processes; especially specification and classification. Includes detailed discussion of second-order stationary processes and Markov processes; inequalities, convergence, laws of large numbers, central limit theorem, ergodic, theorems; and MS estimation, Linear MS estimation, and the Orthogonality Principle. Prerequisite: APMA 3100, MATH 3100, or equivalent.

  • ECE 6435

    Computer Architecture and Design
     Rating

     Difficulty

     GPA

    3.54

    Last Taught

    Spring 2026

    Integration of computer organization concepts such as data flow, instruction interpretation, memory systems, interfacing, and microprogramming with practical and systematic digital design methods such as behavioral versus structural descriptions, divide-and-conquer, hierarchical conceptual levels, trade-offs, iteration, and postponement of detail.  Design exercises are accomplished using a hardware description language and simulation.  Prerequisite by topic:  Digital Logic Design (ECE 2330 or equivalent), Introductory Computer Architecture (ECE 3330 or equivalent), Assembly Language Programming.

  • ECE 5241

    Optics and Lasers
     Rating

     Difficulty

     GPA

    3.55

    Last Taught

    Fall 2024

    Reviews the electromagnetic principles of optics; Maxwell's equations; reflection and transmission of electromagnetic fields at dielectric interfaces; Gaussian beams; interference and diffraction; laser theory with illustrations chosen from atomic, gas and semiconductor laser systems; detectors including photomultipliers and semiconductor-based detectors; and noise theory and noise sources in optical detection. Prerequisite: ECE 3103, 3209, 3750.

  • ECE 6163

    Solid State Devices
     Rating

     Difficulty

     GPA

    3.55

    Last Taught

    Fall 2024

    Introduces semiconductor device operation based on energy bands and carrier statistics. Describes operation of p-n junctions and metal-semiconductor junctions. Extends this knowledge to descriptions of bipolar and field effect transistors, and other microelectronic devices. Related courses: ECE 5150, 6155, and 6167. Prerequisite: ECE 3103 or equivalent, or solid state materials/physics course.

  • ECE 6782

    Machine Learning in Image Analysis
     Rating

     Difficulty

     GPA

    3.56

    Last Taught

    Fall 2025

    This course focuses on an in-depth study of advanced topics and interests in image data analysis. Students will learn practical image techniques and gain mathematical fundamentals in machine learning needed to build their own models for effective problem solving. The graduate students (ECE/CS 6501) will be given additional programming tasks and more advanced theoretical questions.

  • ECE 4907

    Electrical and Computer Engineering Research Projects
     Rating

    5.00

     Difficulty

    4.00

     GPA

    3.58

    Last Taught

    Spring 2026

    Under faculty supervision, students plan a project of at least one semester's duration, conduct the analysis or design and test, and report on the results. If this work is to be the basis for an undergraduate thesis, the course should be taken no later than the seventh semester. Prerequisite: Instructor permission.

  • ECE 2300

    Applied Circuits
     Rating

    4.00

     Difficulty

    4.00

     GPA

    3.59

    Last Taught

    Spring 2026

    This course introduces electrical engineering theory and its application to circuits containing active and passive circuit elements. Content includes fundamental concepts such as voltage, current, power, energy and Ohm's Law as well as circuit analysis techniques including node-voltage and mesh-current based on circuit laws and theorems such as Kirchhoff Laws, source superposition, and equivalent circuits. Prerequisite: Must have completed (APMA 1110 or MATH 1320) AND (ENGR 1624 or ENGR 1410 or ENGR 2595 Topic Engineering Foundations I or ENGR 1010)