• STAT 3110

    Foundations of Statistics
     Rating

    3.59

     Difficulty

    2.83

     GPA

    3.57

    Last Taught

    Fall 2025

    This course provides an overview of basic probability and matrix algebra required for statistics. Topics include sample spaces and events, properties of probability, conditional probability, discrete and continuous random variables, expected values, joint distributions, matrix arithmetic, matrix inverses, systems of linear equations, eigenspaces, and covariance and correlation matrices. Prerequisite: A prior course in calculus II.

  • STAT 6440

    Introduction to Bayesian Methods
     Rating

     Difficulty

     GPA

    3.60

    Last Taught

    Fall 2025

    Course provides an introduction to Bayesian methods with an emphasis on modeling and applications. Topics include the elicitation of prior distributions, deriving posterior and predictive distributions and their moments, Bayesian linear and generalized linear regression, and Bayesian hierarchical models. Conceptual discussion in lectures is supplemented with hands-on practice in applied data-analysis tasks using SAS or R statistical software. Prerequisite: STAT 6120, STAT 6190, and graduate standing in Statistics.

  • STAT 5430

    Statistical Computing with Python and R
     Rating

    2.00

     Difficulty

    3.67

     GPA

    3.63

    Last Taught

    Fall 2025

    "Topics include importing data from various sources into R/SAS, manipulating and combining datasets, transform variables, "clean" data so that it is ready for further analysis, manipulating character strings, export datasets, and produce basic graphical and tabular summaries of data. More advanced topics will include how to write, de-bug, and tune functions & macros. Approx. equal time will be spent using SAS and R. Prereq: Intro statistics course"

  • STAT 1601

    Introduction to Data Science with R
     Rating

    4.30

     Difficulty

    2.16

     GPA

    3.63

    Last Taught

    Fall 2025

    This course provides an introduction to the process of collecting, manipulating, exploring, analyzing, and displaying data using the statistical software R. The collection of elementary statistical analysis techniques introduced will be driven by questions derived from the data. The data used in this course will generally follow a common theme. No prior knowledge of statistics, data science, or programming is required.

  • STAT 3250

    Data Analysis with Python
     Rating

    3.93

     Difficulty

    2.83

     GPA

    3.70

    Last Taught

    Fall 2025

    This course provides an introduction to data analysis using the Python programming language. Topics include using an intergrated development environment; data analysis packages numpy, pandas and scipy; data loading, storage, cleaning, merging, transformation, and aggregation; data plotting and visualization. Prerequisite: A prior course in statistics and a prior course in programming.

  • STAT 3280

    Data Visualization and Management
     Rating

    2.00

     Difficulty

    3.14

     GPA

    3.70

    Last Taught

    Fall 2025

    This course introduces methods for presenting data graphically and in tabular form, including the use of software to create visualizations. Also introduced are databases, with topics including traditional relational databases and SQL (Structured Query Language) for retrieving information. Prerequisite: A prior course in statistics and a prior course in R programming.

  • STAT 3220

    Introduction to Regression Analysis
     Rating

    2.98

     Difficulty

    2.50

     GPA

    3.73

    Last Taught

    Fall 2025

    This course provides a survey of regression analysis techniques, covering topics from simple regression, multiple regression, logistic regression, and analysis of variance. The primary focus is on model development and applications. Prerequisite: A prior course in statistics.

  • STAT 4630

    Statistical Machine Learning
     Rating

    3.42

     Difficulty

    2.56

     GPA

    3.74

    Last Taught

    Fall 2025

    This course introduces various topics in machine learning, including regression, classification, resampling methods, linear model selection and regularization, tree-based methods, support vector machines, and unsupervised learning. The statistical software R is incorporated throughout. Prerequisite: A prior course in regression and a prior course in programming.

  • STAT 5330

    Data Mining
     Rating

    1.00

     Difficulty

    5.00

     GPA

    3.75

    Last Taught

    Fall 2025

    This course introduces a plethora of methods in data mining through the statistical point of view. Topics include linear regression and classification, nonparametric smoothing, decision tree, support vector machine, cluster analysis and principal components analysis. Conceptual discussion in lectures is supplemented with hands-on practice in applied data-analysis tasks using SAS or R statistical software. Prerequisites: Previous or concurrent enrollment in STAT 5120 or STAT 6120.

  • STAT 1602

    Introduction to Data Science with Python
     Rating

    3.18

     Difficulty

    2.80

     GPA

    3.75

    Last Taught

    Fall 2025

    This course provides an introduction to various topics in data science using the Python programming language. The course will start with the basics of Python, and apply them to data cleaning, merging, transformation, and analytic methods drawn from data science analysis and statistics, with an emphasis on applications. No prior knowledge of statistics, data science, or programming is required.