• STAT 6190

    Introduction to Mathematical Statistics
     Rating

    2.50

     Difficulty

    4.50

     GPA

    3.53

    Last Taught

    Fall 2025

    This course introduces fundamental concepts in probability that underlie statistical thinking and methodology. Topics include the probability framework, canonical probability distributions, transformations, expectation, moments and momentgenerating functions, parametric families, elementary inequalities, multivariate distributions, and convergence concepts for sequences of random variables.Prerequisite:Graduate standing in Statistics, or instructor permission.

  • STAT 6120

    Linear Models
     Rating

    2.67

     Difficulty

    3.00

     GPA

    3.55

    Last Taught

    Fall 2025

    Course develops fundamental methodology to regression and linear-models analysis in general. Topics include model fitting and inference, partial and sequential testing, variable selection, transformations, diagnostics for influential observations, multicollinearity, and regression in nonstandard settings. Conceptual discussion in lectures is supplemented withhands-on practice in applied data-analysis tasks using SAS or R statistical software.Prerequisite: Graduate standing in Statistics, or instructor permission.

  • STAT 3110

    Foundations of Statistics
     Rating

    3.59

     Difficulty

    2.81

     GPA

    3.57

    Last Taught

    Fall 2025

    This course provides an overview of basic probability and matrix algebra required for statistics. Topics include sample spaces and events, properties of probability, conditional probability, discrete and continuous random variables, expected values, joint distributions, matrix arithmetic, matrix inverses, systems of linear equations, eigenspaces, and covariance and correlation matrices. Prerequisite: A prior course in calculus II.

  • STAT 7100

    Introduction to Advanced Statistical Inference
     Rating

     Difficulty

     GPA

    3.58

    Last Taught

    Spring 2025

    This course introduces fundamental concepts in the classical theory of statistical inference. Topics include sufficiency and related statistical principles, elementary decision theory, point estimation, hypothesis testing, likelihood-ratio tests, interval estimation, large-sample analysis, and elementary modeling applications. Prerequisite: STAT 6190 and graduate standing in Statistics

  • STAT 4160

    Experimental Design
     Rating

    5.00

     Difficulty

    2.00

     GPA

    3.59

    Last Taught

    Summer 2025

    This course introduces various topics in experimental design, including simple comparative experiments, single factor analysis of variance, randomized blocks, Latin squares, factorial designs, blocking and confounding, and two-level factorial designs. The statistical software R is used throughout this course. Prerequisite: A prior course in regression.

  • STAT 6440

    Introduction to Bayesian Methods
     Rating

     Difficulty

     GPA

    3.60

    Last Taught

    Fall 2025

    Course provides an introduction to Bayesian methods with an emphasis on modeling and applications. Topics include the elicitation of prior distributions, deriving posterior and predictive distributions and their moments, Bayesian linear and generalized linear regression, and Bayesian hierarchical models. Conceptual discussion in lectures is supplemented with hands-on practice in applied data-analysis tasks using SAS or R statistical software. Prerequisite: STAT 6120, STAT 6190, and graduate standing in Statistics.

  • STAT 6020

    Optimization and Monte Carlo Methods in Statistics and Machine Learning
     Rating

     Difficulty

     GPA

    3.61

    Last Taught

    Fall 2024

    This course is designed to give a graduate-level student (and senior undergrads) a thorough grounding in properties about optimization and integrating problems in statistics and machine learning, and a broad comprehension of algorithms tailored to exploit such properties and some additional computational interference strategies.

  • STAT 5430

    Statistical Computing with Python and R
     Rating

    2.00

     Difficulty

    3.67

     GPA

    3.63

    Last Taught

    Fall 2025

    "Topics include importing data from various sources into R/SAS, manipulating and combining datasets, transform variables, "clean" data so that it is ready for further analysis, manipulating character strings, export datasets, and produce basic graphical and tabular summaries of data. More advanced topics will include how to write, de-bug, and tune functions & macros. Approx. equal time will be spent using SAS and R. Prereq: Intro statistics course"

  • STAT 1601

    Introduction to Data Science with R
     Rating

    4.30

     Difficulty

    2.16

     GPA

    3.63

    Last Taught

    Fall 2025

    This course provides an introduction to the process of collecting, manipulating, exploring, analyzing, and displaying data using the statistical software R. The collection of elementary statistical analysis techniques introduced will be driven by questions derived from the data. The data used in this course will generally follow a common theme. No prior knowledge of statistics, data science, or programming is required.

  • STAT 4220

    Applied Analytics for Business
     Rating

    3.33

     Difficulty

    3.67

     GPA

    3.66

    Last Taught

    Spring 2025

    This course focuses on applying data analytic techniques to business, including customer analytics, business analytics, and web analytics through mining of social media and other online data. Several projects are incorporated into the course. Prerequisite: A prior course in regression and a prior course in programming.