Your feedback has been sent to our team.
3.67
5.00
3.61
Spring 2025
Covers advanced principles of operating systems. Technical topics include support for distributed OSs; microkernels and OS architectures; processes and threads; IPC; files servers; distributed shared memory; object-oriented OSs; reflection in OSs; real-time kernels; multiprocessing; multimedia and quality of service; mobile computing; and parallelism in I/O. Prerequisite: Undergraduate course in OS; CS 6354 or instructor permission.
—
—
3.98
Spring 2025
Interactions between robots and humans are influenced by form, function and expectations. Quantitative techniques evaluate performance of specific tasks and functions. Qualitative techniques are used to evaluate the interaction and to understand expectations and perceptions of the human side of the interaction. Students use humanoid robots to develop and evaluate interactions within a specific application context.
3.19
2.43
3.80
Fall 2025
Course content varies by section and is selected to fill timely and special interests and needs of students. See CS 7501 for example topics. May be repeated for credit when topic varies. Prerequisite: Instructor permission.
3.00
4.00
3.97
Fall 2025
This is a core Cyber Physical Systems (CPS) class. It provides fundamental core material in signal processing, machine learning, and feedback control. However, the material is not presented in a traditional manner and does not replace deep domain expertise in these topics. Rather, the principles and skills taught in this class highlight the intersection of the cyber and the physical.
—
—
3.94
Spring 2025
Cyber-physical systems (CPS) are smart systems that include co-engineered interacting networks of physical and computational components. This course will teach students the required skills to analyze the CPS that are all around us, so that when they contribute to the design of CPS, they are able to understand important safety and security aspects and feel confident designing and analyzing CPS systems.
—
—
—
Fall 2025
This course is designed to develop cross-competency in the technical, analytical, and professional capabilities necessary for the emerging field of Cyber-Physical Systems (CPS). It provides convergence learning activities based around the applications, technologies, and system designs of CPS as well as exploring the ethical, social, and policy dimensions of CPS work. The course also emphasizes the importance of communication as a necessary skill.
4.00
4.00
3.47
Spring 2025
This course provides an overview of the state of the art in software analysis including static and dynamic analysis techniques and verification and validation. It explores the various ways that the analyses are used to predict software behavior. The applications include inference, symbolic execution, fault localization, model checking, security and performance. The course combines theory with practical implementation and usage. Prerequisites: CS 3240.
—
—
—
Fall 2025
A graduate student returning from Curricular Practical Training can use this course to claim one credit hour of academic credit after successfully reporting, orally and in writing, a summary of the CPT experience to his/her academic advisor.
—
—
—
Fall 2025
Detailed study of graduate course material on an independent basis under the guidance of a faculty member.
—
—
3.65
Fall 2025
Analyzes network topologies; backbone design; performance and queuing theory; data-grams and virtual circuits; technology issues; layered architectures; standards; survey of commercial networks, local area networks, and contention-based communication protocols; encryption; and security. Course equivalent to ECE 7457. Prerequisite: CS 6456 or instructor permission.
No course sections viewed yet.