Your feedback has been sent to our team.
—
—
3.77
Spring 2026
The surface transportation system is transforming into a cyber-physical system, with the wide-scale use of sensors and communications in infrastructure management, integration of wireless device apps for improved traveler situational awareness, and introduction of connected and automated vehicles. This course explores the resulting "intelligent transportation system" through readings, case studies, projects, and discussion forums.
—
—
3.48
Fall 2025
Economic theory and applications enhance transport demand analysis, transport pricing, welfare considerations and policy evaluation. This course illustrates the fundamentals of transport economics (costs, benefits and pricing), describes key factors that affect these (movement and location choice), and introduces different methods of economic analysis for quantifying the trends in and interactions across these topics. Pre/Co-requisite: CE 6410
—
—
3.58
Spring 2026
Detailed study of special topics in civil engineering. Master's-level graduate students. Prerequisites: to be listed for each section as needed
—
—
3.53
Fall 2025
Reviews basic stress-strain concepts; constitutive relations. Studies unsymmetrical bending, shear center, and shear flow. Analyzes curved flexural members, beams on elastic foundation, torsion, bending, and twisting of thin walled sections. Taught concurrently w/ AM 6010. Prerequisite: Undergraduate mechanics and mathematics.
—
—
—
Fall 2025
Introduces continuum mechanics and mechanics of deformable solids. Vectors and cartesian tensors, stress, strain, deformation, equations of motion, constitutive laws, introduction to elasticity, thermal elasticity, viscoelasticity, plasticity, and fluids. Taught concurrently with APMA 6020, AM 6020, MAE 6020. Prerequisite: Instructor permission.
—
—
—
Fall 2025
Free and forced vibration of undamped and damped single-degree-of-freedom systems and undamped multi-degree-of-freedom systems; use of Lagrange's equations, Laplace transform, matrix formulation, and other solution methods; normal mode theory; introduction to vibration of continuous systems. Taught concurrently w/ AM 6230 and MAE 6230. Prerequisite: Instructor permission.
—
—
—
Summer 2024
Introduces the elastic stability of structural and mechanical systems. Studies classical stability theory and buckling of beams, trusses, frames, arches, rings and thin plates and shells. Also covers the derivation of design formulas, computational formulation and implementation. Taught concurrently with AM 6750. Prerequisite: Instructor permission.
—
—
—
Fall 2025
This course is designed to develop cross-competency in the technical, analytical, and professional capabilities necessary for the emerging field of Cyber-Physical Systems (CPS). It provides convergence learning activities based around the applications, technologies, and system designs of CPS as well as exploring the ethical, social, and policy dimensions of CPS work. The course also emphasizes the importance of communication as a necessary skill.
—
—
—
Spring 2026
Detailed study of graduate course material on an independent basis under the guidance of a faculty member. Master's-level graduate students. Prerequisites: Instructor Permission
—
—
—
Spring 2026
Formal record of student commitment to project research under the guidance of a faculty advisor. Registration may be repeated as necessary. Master's-level graduate students. Prerequisites: Instructor Permission
No course sections viewed yet.