Your feedback has been sent to our team.
—
—
—
Fall 2025
This class focuses on the next generation of buildings where smart devices, Internet of Things (IoT) systems, machine learning applications, and simulations platforms will be utilized to contextualize the changes in indoor environments and occupants¿ needs, allowing building systems (e.g., HVAC, lighting, blinds) to dynamically adjust themselves to enhance the indoor environmental conditions from the health, comfort, and energy perspectives.
—
—
—
Fall 2025
This course focuses on urban stormwater management, covering its effects on infrastructure and ecosystems, hydrologic principles, regulations, and both structural and non-structural management strategies. It includes practical projects and modeling tools, with options for graduate customization to align with academic and career objectives. Graduate students have opportunity to customize class to their academic and professional goals.
—
—
—
Spring 2025
The goal of this course is to illustrate the importance of uncertainty analysis in hydrology. Topics include extreme value theory applied to floods & droughts, regionalization methods for predictions in ungauged basins, & trend analysis of historical time series. Students should leave the course with an understanding of how to apply these methods in practice to design civil infrastructure systems that are robust to hydrologic uncertainty. Prerequisite: APMA 3100 and CE 3220 or Equivalent
—
—
—
Spring 2025
Study of the dynamic behavior of such structures as beams, rigid frames, floors, bridges, and multi-story buildings under the action of various disturbing forces such as wind, blasts, earthquakes, vehicles, machinery, etc.; dynamic modeling of single, multidegree of freedom, and continuous systems; damping; numerical integration; Prerequisite: Concrete and metal structure design.
—
—
—
Fall 2025
Introduces continuum mechanics and mechanics of deformable solids. Vectors and cartesian tensors, stress, strain, deformation, equations of motion, constitutive laws, introduction to elasticity, thermal elasticity, viscoelasticity, plasticity, and fluids. Taught concurrently with APMA 6020, AM 6020, MAE 6020. Prerequisite: Instructor permission.
—
—
—
Fall 2025
Free and forced vibration of undamped and damped single-degree-of-freedom systems and undamped multi-degree-of-freedom systems; use of Lagrange's equations, Laplace transform, matrix formulation, and other solution methods; normal mode theory; introduction to vibration of continuous systems. Taught concurrently w/ AM 6230 and MAE 6230. Prerequisite: Instructor permission.
—
—
—
Fall 2025
This course is designed to develop cross-competency in the technical, analytical, and professional capabilities necessary for the emerging field of Cyber-Physical Systems (CPS). It provides convergence learning activities based around the applications, technologies, and system designs of CPS as well as exploring the ethical, social, and policy dimensions of CPS work. The course also emphasizes the importance of communication as a necessary skill.
—
—
—
Fall 2025
Detailed study of graduate course material on an independent basis under the guidance of a faculty member. Master's-level graduate students. Prerequisites: Instructor Permission
—
—
—
Fall 2025
Formal record of student commitment to project research under the guidance of a faculty advisor. Registration may be repeated as necessary. Master's-level graduate students. Prerequisites: Instructor Permission
—
—
—
Fall 2025
Weekly meeting of graduate students and faculty for presentation and discussion of contemporary research and practice in civil engineering. This seminar is offered every spring and fall semesters. Prerequisite: For students who have established resident credit.
No course sections viewed yet.