Your feedback has been sent to our team.
—
—
3.75
Spring 2026
Applies basic engineering principles, analytical procedures and design methodology to special problems of current interest in civil engineering. Topic for each semester are announced at the time of course enrollment.
4.50
2.00
3.76
Fall 2025
Construction projects only occur when the needs of the market, sponsors, end-users, and society are sustainably met. In this course, students will learn how to: 1) plan successful business cases for construction projects considering technical, societal, financial, legal, environmental, and market limitations, 2) evaluate and select the best alternative, and 3) express it through a business plan while increasing their entrepreneurship competencies.
—
—
3.77
Spring 2026
The surface transportation system is transforming into a cyber-physical system, with the wide-scale use of sensors and communications in infrastructure management, integration of wireless device apps for improved traveler situational awareness, and introduction of connected and automated vehicles. This course explores the resulting "intelligent transportation system" through readings, case studies, projects, and discussion forums.
—
—
3.79
Fall 2024
This course is co-taught in partnership with field engineers, project managers, subject matter experts, and executives from the top construction companies of the region, in a series of case-study sessions designed to bring CEM theory and practice into the same room. Prereq: Already taken CE 2030 or currently enrolled in CE 2030.
—
—
3.81
Spring 2026
Introduction to computational tools and approaches common in water resource engineering. Topics include: geographic information systems (GIS) for water resources; software tools applied for hydrologic and hydraulic data analysis and visualization; and use of industry-standard hydrology and hydraulic models water resource system simulation and design. Pre/Coreq: Students must have completed or currently enrolled in CE 3220.
4.33
2.00
3.82
Spring 2026
Applies basic engineering principles, analytical procedures and design methodology to special problems of current interest in civil engineering. Topic for each semester are announced at the time of course enrollment. Prerequisite: Fourth-year standing and instructor permission.
—
—
3.83
Spring 2026
This course is an introduction to the theory, methods, and applications of risk analysis and systems engineering. The topics include research and development priorities, risk-cost-benefit analysis, emergency management, human health and safety, environmental risk, extreme events, infrastructure resilience, system interdependencies, and enterprise systems. Prerequisites: Course in Probability/Statistics; Third or fourth year standing in SEAS; Or permission of instructor.
—
—
3.85
Fall 2024
We will explore terminology and concepts for characterizing and mathematically modeling human impacts on microbial systems and vice versa. Special consideration will be given to microbe-mediated cycling of organic materials (i.e., pollutants) in natural and engineered systems, including: conventional water and wastewater treatment, municipal landfills, pristine and contaminated groundwater and surface waters, etc.
—
—
3.88
Spring 2026
Study of a civil engineering problem in depth by each student using library, computer, or laboratory facilities. The project is conducted in close consultation with departmental faculty and involves survey, analysis, or project development. Progress reports and a comprehensive written report are required. May be repeated if necessary. Prerequisite: Contact individual professor for Instructor Permission.
4.67
2.00
3.89
Fall 2025
Laboratory study of soil properties. Students will gather and evaluate data to determine particle size, permeability, dry density, compressive strength, shear strength, and critical water contents of soil specimen. Students will conduct ASTM standard soil tests and prepare written reports. Pre-requisite CE 2310, Co-requisite CE 3710.
No course sections viewed yet.