• CHE 3321

    Transport Processes I: Momentum Transfer
     Rating

    3.86

     Difficulty

    3.00

     GPA

    2.85

    Last Taught

    Fall 2025

    Fundamental principles of momentum transport will be discussed and mathematical methods will be used to describe transport in steady state and unsteady state situations. This course will emplasize the application of these principles and quantitative relations to fluid flow problems. Three lecture hours . Prerequisite: APMA 2130, CHE 2215, 2216.

  • CHE 3316

    Chemical Thermodynamics and Staged Unit Operations
     Rating

    2.61

     Difficulty

    4.59

     GPA

    2.94

    Last Taught

    Fall 2025

    Principles of chemical thermodynamics developed and applied to chemical and phase equilibria. Principles and methods for staged separation processes including distillation, absorption and stripping, extraction, and adsorption systems. Four Lecture Hours. Prerequisite: CHE 2202 and 2215.

  • CHE 3322

    Transport Processes II: Heat and Mass Transfer
     Rating

    2.89

     Difficulty

    3.33

     GPA

    2.95

    Last Taught

    Spring 2025

    Fundamental concepts of heat and mass transfer; applications of these concepts and material and energy conservation calculations for design of heat exchanger and packed absorption/stripping columns. Four lecture hours. Prerequisites: CHE 2216, 3316, 3321.

  • CHE 2202

    Thermodynamics
     Rating

    2.89

     Difficulty

    3.84

     GPA

    2.96

    Last Taught

    Spring 2025

    Includes the formulation and analysis of the first and second laws of thermodynamics; energy conservation; concepts of equilibrium, temperature, energy, and entropy; partial molar properties; pure component and mixture equations of state; processes involving energy transfer as work and heat; reversibility and irreversibility; and closed and open systems and cyclic processes. Corequisite: APMA 2120

  • CHE 2215

    Material and Energy Balances
     Rating

    3.93

     Difficulty

    3.20

     GPA

    2.97

    Last Taught

    Fall 2025

    Introduces the field of chemical engineering, including material and energy balances applied to chemical processes, physical and thermodynamic properties of multi-component systems. Three lecture and one discussion hour. Prerequisite: CHEM 1410 or CHEM 1610 or CHEM 1810, and APMA 1110 or MATH 1320.

  • CHE 3318

    Chemical Reaction Engineering
     Rating

    3.89

     Difficulty

    3.67

     GPA

    3.05

    Last Taught

    Spring 2025

    Determination of rate equations for chemical reactions from experimental data. Use of kinetics and transport relations in the design of both batch and continuous reactors; homogeneous, heterogeneous, uncatalyzed and catalyzed reactions. Three lecture hours. Prerequisite: CHE 2216, 3316; corequisite: CHE 3322.

  • CHE 2216

    Modeling and Simulation in Chemical Engineering
     Rating

    3.25

     Difficulty

    4.35

     GPA

    3.05

    Last Taught

    Summer 2025

    Mathematical and computational tools for the analysis and simulation of chemical processes and physicochemical phenomena. Mathematical and numerical methods. Three lecture and one laboratory hour. Prerequisite CHE 2215, CS1110 or CS1111 or CS1112 or CS 1113; Co-requisite: APMA 2130 or MATH 3250, or APMA 2501 topic "Differential Equations & Linear Algebra"

  • CHE 6618

    Chemical Reaction Engineering
     Rating

     Difficulty

     GPA

    3.32

    Last Taught

    Spring 2025

    Fundamentals of chemical reaction kinetics and mechanisms; experimental methods of determining reaction rates; introduction to heterogeneous catalysis; application of chemical kinetics, along with mass-transfer theory, fluid mechanics, and thermodynamics, to the design and operation of chemical reactors. Prerequisite: CHE 6625 and 6665.

  • CHE 6625

    Transport Processes
     Rating

    1.00

     Difficulty

    3.00

     GPA

    3.34

    Last Taught

    Fall 2025

    Integrated introduction to fluid mechanics, heat transfer, and mass transfer. Development of the basic equations of change for transport of momentum, energy, and mass in continuous media. Applications with exact solutions, consistent approaches to limiting cases and approximate solutions to formulate the relations to be solved in more complicated problems. Prerequisite: Undergraduate transport processes

  • CHE 3398

    Chemical Engineering Laboratory I
     Rating

    2.22

     Difficulty

    3.33

     GPA

    3.34

    Last Taught

    Spring 2025

    Experimental study of selected operations and phenomena in fluid mechanics and heat transfer. Students plan experiments, analyze data, calculate results and prepare written and/or oral planning and final technical reports. One hour discussion, four laboratory hours. Prerequisite: CHE 2215 and CHE 3316 and CHE 3321; corequisite: CHE 3322