Your feedback has been sent to our team.
3.93
3.20
2.97
Fall 2025
Introduces the field of chemical engineering, including material and energy balances applied to chemical processes, physical and thermodynamic properties of multi-component systems. Three lecture and one discussion hour. Prerequisite: CHEM 1410 or CHEM 1610 or CHEM 1810, and APMA 1110 or MATH 1320.
3.11
1.67
3.58
Fall 2025
Introduction to the fundamentals of biochemistry and molecular and cell biology emphasizing their relevance to industrial applications of biotechnology. Three lecture hours. Prerequisite: CHEM 1410 or CHEM 1810.
4.67
3.00
—
Fall 2025
Chemical Engineering special topics vary by section.
2.61
4.59
2.94
Fall 2025
Principles of chemical thermodynamics developed and applied to chemical and phase equilibria. Principles and methods for staged separation processes including distillation, absorption and stripping, extraction, and adsorption systems. Four Lecture Hours. Prerequisite: CHE 2202 and 2215.
3.86
3.00
2.85
Fall 2025
Fundamental principles of momentum transport will be discussed and mathematical methods will be used to describe transport in steady state and unsteady state situations. This course will emplasize the application of these principles and quantitative relations to fluid flow problems. Three lecture hours . Prerequisite: APMA 2130, CHE 2215, 2216.
—
—
—
Fall 2025
This course will cover the fundamentals of Physical Chemistry with an emphasis on engineering-relevant topics and applications. This course will connect molecular properties to macroscopic observables via the fundamentals of thermodynamics, quantum theory, statistical mechanics, and chemical kinetics. Prerequisites: APMA 2130 and CHEM 1420 or equivalent
4.67
2.50
3.64
Fall 2025
Principles of bioseparations engineering, including specialized unit operations not normally covered in regular chemical engineering courses. Processing operations downstream of the initial manufacture of biotechnology products, including product recovery, separations, purification, and ancillary operations such as sterile processing, clean-in place and regulatory aspects. Three lecture hours. Prerequisite: CHE 3322
—
—
3.47
Fall 2025
Analyzes the mechanisms and kinetics of various polymerization reactions; relations between the molecular structure and polymer properties, and how these properties can be influenced by the polymerization process; fundamental concepts of polymer solution and melt rheology. Applications to polymer processing operations, such as extrusion, molding, and fiber spinning. Three lecture hours. Pre- or Co-requisite CHE 3321 or BME 3240 or MAE 3140
—
—
3.63
Fall 2025
Overview of energy technologies with an emphasis on materials research and development concepts and current production. The scope of these technologies within the broader contexts of innovation and energy policy. Topics will include fossil fuels, electrochemical energy storage, fuel cells, and photovoltaics. Prerequisite (CHEM 1410 or CHEM 1610 or CHEM 1810) AND (CHE 2202 or MAE 2100 or MSE 3050).
—
—
3.60
Fall 2025
This course provides a practical introduction to data science and machine-learning for chemical engineers. These tools, not covered in the core UG ChE curriculum, have become increasingly relevant and widely used in the chemical engineering industry. Course topics include data storage and retrieval, dimensional reduction, classification, regression algorithms, resampling and regularization, and case studies in chemical engineering. Pre-requisite: (CS 1110 or CS 1111 or CS 1112 or CS 1113 or CS 1110 place-out exam) OR (APMA 2130 or MATH 3250) OR APMA 3110 OR CHE 2216 OR equivalent
No course sections viewed yet.