Your feedback has been sent to our team.
—
—
—
Fall 2025
Students learn how to process imperfect biomedical measurements and extract information. Students learn fundamental principles of signal and image processing and machine learning. Prerequisites: Ability to program in MATLAB or Python. Knowledge of calculus, vectors and matrices
—
—
—
Spring 2025
Students learn to motivate research, design experiments, analyze/display data, present results for their own research. Receive training in professional skills, including project leadership and management, best practices for collaborative research, and developing resilience. Prereq: BME 6001-6004, or permission by instructor
—
—
—
Spring 2025
Students learn principles and techniques to computationally approach biomedical research and practice. Students obtain hands-on experience using computational thinking/strategy and build computational models to describe biomedical phenomena or analyze biomedical data. Prereq: BME 6001-6004 and ability in MATLAB or Python.
—
—
—
Spring 2025
A project-based grounding in biomedical product design, with emphasis on clinical immersion and topics including design fundamentals, problem/needs identification, delineation of realistic constraints and product specifications, intellectual property, market analysis, entrepreneurship, specific advanced design topics, business plan development, venture funding, and medical product testing methods. Prerequisite: Instructor Permission
—
—
—
Fall 2025
A professional development course for biomedical engineering graduate students.
—
—
4.00
Spring 2025
In a team, develop, prototype, and conduct verification and validation tests on engineering solutions to clinical challenges, demonstrating concept viability. Formal Design Control, Life Cycle, Risk Analysis, Project Management and Intellectual Property Strategies are introduced. Using Product Development Protocols, prepare a regulatory and implementation pathway analysis for commercialization into clinical practice. Prerequisite: BME 6550 Special Topics: Clinical Technology Continuum of Care
—
—
3.96
Spring 2025
Introduces techniques for constructing mathematical and computational models of biological processes at many levels of organizational scale from genome to whole-tissue. Topics include choice of techniques, quantitative characterization of biological properties, assumptions and model simplification, parameter estimation and sensitivity analysis, model verification and validation and integration of computational modeling w/experimental approaches.Prerequisites: BME 6101, and BME 2104 or BME 7806 (or equivalent).
—
—
3.96
Fall 2025
Applies engineering science, design methods, and system analysis to developing areas and current problems in biomedical engineering. Topics vary by semester.
—
—
3.78
Spring 2025
The course will cover human genetics and genomics, including the human/mammalian genome variation, determination of genomic variation on phenotype and disease risk, mapping and characterizing genetic variants on phenotype, determining the putative impact of genetic variants on gene expression (transcriptomics, epigenomics), the promise and implications of genome science on precision medicine and the ethical, legal & social implications.Pre-requisite: BIOL 3010 or BIOL 4210 or instructor consent.
—
—
3.68
Spring 2025
Provides students with a quantitative framework for identifying and addressing important biological questions at the molecular, cell, and tissue levels. Focuses on the interplay between methods and logic, with an emphasis on the themes that emerge repeatedly in quantitative experiments. Prerequisites: BME 6101 (or equivalent), SEAS graduate student status, or instructor permission.
No course sections viewed yet.