• BME 4417

    Tissue Engineering
     Rating

    3.67

     Difficulty

    3.00

     GPA

    3.60

    Last Taught

    Spring 2026

    Introduces the fundamental principles of tissue engineering. Topics: tissue organization and dynamics, cell and tissue characterization, cell-matrix interactions, transport processes in engineered tissues, biomaterials and biological interfaces, stem cells and interacting cell fate processes and tissue engineering methods. Examples of approaches for regeneration of cartilage, bone, ligament, tendons, skin and liver are presented. Prerequisites: APMA 2130 or MATH 3250 or APMA 2501 - Differential Equations & Linear Algebra, and BME 2101, and BME 2104, or instructor permission.

  • BME 2102

    Physiology II
     Rating

    3.73

     Difficulty

    3.02

     GPA

    3.53

    Last Taught

    Spring 2026

    Introduces the physiology of the kidney, salt and water balance, gastrointestinal system, endocrine system, and central nervous system, with reference to diseases and their pathophysiology. Prerequisite: (CHEM 1410 or CHEM 1610 or CHEM 1810) AND (PHYS 1425 or PHYS 1420 or PHYS 1710) AND BME 2101, or instructor permission.

  • BME 4806

    Biomedical Applications of Genetic Engineering
     Rating

    2.73

     Difficulty

    3.10

     GPA

    3.24

    Last Taught

    Fall 2025

    Provides a grounding in molecular biology and a working knowledge of recombinant DNA technology, thus establishing a basis for the evaluation and application of genetic engineering in whole animal systems. Beginning with the basic principles of genetics, this course examines the use of molecular methods to study gene expression, deliver viral and non-viral vectors, and its critical role in health. Prerequisite: BME 2101. Co-requisites: BME 2104.

  • BME 2000

    Biomedical Engineering Design and Discovery
     Rating

    2.97

     Difficulty

    3.25

     GPA

    3.75

    Last Taught

    Spring 2026

    Provides students with the skills necessary to engage in meaningful engineering design, and focuses on the latter stages of the engineering design process - detailed design, prototyping, and evaluation. Students develop skills in computer assisted design, embedded controls, prototyping, analysis and teamwork. A major focus of the class is the execution of a design project. Prerequisites: PHYS 1425, and BME major or minor. Recommended Corequisite: PHYS 2415 or ECE 2200.

  • BME 3310

    Biomedical Systems Analysis and Design
     Rating

    3.20

     Difficulty

    3.44

     GPA

    3.42

    Last Taught

    Spring 2026

    Presents analytical tools used to model signals & linear systems. BME examples include multicompartment modeling of drug delivery, modeling of dynamic biomechanical systems & electrical circuit models of excitable cells. Topics: signals & systems, convolution, continuous time Fourier transforms, electrical circuits & applications of linear system theory. Prerequisite: PHYS 2415 & APMA 2130, & CS 1110 or equivalent

  • BME 3240

    Biotransport
     Rating

    2.83

     Difficulty

    3.50

     GPA

    3.37

    Last Taught

    Spring 2026

    Introduces principles and application of fluid and mass transport processes in cell, tissue and organ systems. Topics include intro to physiological fluid mechanics in the circulation and tissue, fundamentals of mass transport in biological systems, effects of mass transport and biochemical interactions at the cell and tissue scales and fluid and mass transport in organs. Prerequisites: APMA 2130 or MATH 3250, or APMA 2501 - Differential Equations & Linear Algebra, and BME 2101, and BME 2104, or instructor permission.

  • BME 2101

    Physiology I for Engineers
     Rating

    4.37

     Difficulty

    3.51

     GPA

    3.28

    Last Taught

    Spring 2026

    You will learn how excitable tissue, nerves and muscle, and the cardiovascular and respiratory systems function. You will develop an understanding of mechanisms, with an introduction to structure, an emphasis on quantitative analysis, and integration of hormonal and neural regulation and control. Prerequisites: (PHYS 1425 or PHYS 1420 or PHYS 1710) AND (APMA 1110 or MATH 1320) AND (CHEM 1410 or CHEM 1610 or CHEM 1810) AND BME Major or Minor

  • BME 2104

    Cell and Molecular Biology for Engineers
     Rating

    4.17

     Difficulty

    3.60

     GPA

    3.35

    Last Taught

    Spring 2026

    Intro to fundamentals of cell structure and function, emphasizing the techniques and technologies available for the study of cell biology. Content includes cell structure and function; energy flow in cells; information flow in cells focuses on modern molecular biology and genetic engineering, and includes DNA replication, the cell cycle, gene expression, gene regulation, and protein synthesis. Prerequisite: CHEM 1410 or CHEM 1610 or CHEM 1810 or instructor permission.

  • BME 4783

    Medical Imaging Modalities
     Rating

    3.44

     Difficulty

    3.67

     GPA

    3.44

    Last Taught

    Spring 2024

    An overview of modern medical imaging modalities with regard to the physical basis of image acquisition and methods of image reconstruction. Topics cover the basic engineering and physical principles underlying the major medical imaging modalities: x-ray (plain film, mammography, CT), nuclear medicine (PET) and (SPECT), ultrasound, and MRI. Prerequisite: BME 2315, BME 3310, or instructor permission.

  • BME 3636

    Neural Network Models of Cognition and Brain Computation
     Rating

    3.00

     Difficulty

    4.00

     GPA

    3.29

    Last Taught

    Spring 2024

    An introductory course to neural networks research, specifically biologically-based networks that reproduce cognitive phenomena. The goal of this course is to teach the basic thinking and methodologies used in constructing and understanding neural-like networks. Cross-listed as NESC 5330. 3rd or 4th year standing; or permission of the instructor.