• BME 3090

    Biomedical Engineering Integrated Design and Experimental Analysis (IDEAS)
     Rating

    3.87

     Difficulty

    4.33

     GPA

    3.64

    Last Taught

    Spring 2026

    Second part of a year-long course integrating concepts and skills from prior courses to formulate and solve problems in biomedical systems, including experimental design, performance and analysis. Prerequisite: 3rd Year standing in BME major, or instructor permission

  • BME 3240

    Biotransport
     Rating

    2.83

     Difficulty

    3.50

     GPA

    3.37

    Last Taught

    Spring 2026

    Introduces principles and application of fluid and mass transport processes in cell, tissue and organ systems. Topics include intro to physiological fluid mechanics in the circulation and tissue, fundamentals of mass transport in biological systems, effects of mass transport and biochemical interactions at the cell and tissue scales and fluid and mass transport in organs. Prerequisites: APMA 2130 or MATH 3250, or APMA 2501 - Differential Equations & Linear Algebra, and BME 2101, and BME 2104, or instructor permission.

  • BME 3310

    Biomedical Systems Analysis and Design
     Rating

    3.20

     Difficulty

    3.44

     GPA

    3.42

    Last Taught

    Spring 2026

    Presents analytical tools used to model signals & linear systems. BME examples include multicompartment modeling of drug delivery, modeling of dynamic biomechanical systems & electrical circuit models of excitable cells. Topics: signals & systems, convolution, continuous time Fourier transforms, electrical circuits & applications of linear system theory. Prerequisite: PHYS 2415 & APMA 2130, & CS 1110 or equivalent

  • BME 3636

    Neural Network Models of Cognition and Brain Computation
     Rating

    3.00

     Difficulty

    4.00

     GPA

    3.29

    Last Taught

    Spring 2024

    An introductory course to neural networks research, specifically biologically-based networks that reproduce cognitive phenomena. The goal of this course is to teach the basic thinking and methodologies used in constructing and understanding neural-like networks. Cross-listed as NESC 5330. 3rd or 4th year standing; or permission of the instructor.

  • BME 4063

    Biomedical Engineering Capstone Design I
     Rating

    4.17

     Difficulty

    3.00

     GPA

    3.87

    Last Taught

    Fall 2025

    A year-long design project required for BME majors. Students select, formulate, and solve a design problem related to a device or a system. Projects use conceptual design, skills obtained in the integrated lab and substantial literature and patent reviews. Projects are sponsored by faculty, physicians and/or companies. Students may work on their own with outside team members when appropriate or with other students in integrative teams. Prerequisite: 4th year standing in the Biomedical Engineering major or instructor permission.

  • BME 4064

    Biomedical Engineering Capstone Design II
     Rating

    4.00

     Difficulty

    4.00

     GPA

    3.83

    Last Taught

    Spring 2026

    Second half of a year-long design project required for BME majors. Students select, formulate, & solve a design problem related to a device or a system. Projects use conceptual design, skills obtained in the integrated lab & substantial literature and patent reviews. Projects are sponsored by faculty, physicians and/or companies. Students may work on their own with outside team members when appropriate or with other students in integrative teams. Prerequisite: 4th year standing in the Biomedical Engineering major or instructor permission.

  • BME 4280

    Motion Biomechanics
     Rating

    4.00

     Difficulty

    2.00

     GPA

    3.56

    Last Taught

    Spring 2026

    Focuses on the study of forces (and their effects) that act on the musculoskeletal structures of the human body. Based on the foundations of functional anatomy and engineering mechanics (rigid body and deformable approaches); students are exposed to clinical problems in orthopedics and rehabilitation. Prerequisite: BME 2101 & BME 2220, or instructor permission.

  • BME 4290

    Stem Cell Engineering
     Rating

     Difficulty

     GPA

    Last Taught

    Fall 2025

    How does a single fertilized egg grow and divide into every cell in the body, from branching neurons to beating cardiomyocytes and everything in between? Can we harness this knowledge to better understand disease, and to produce therapeutically relevant cell types, tissues, and organs? You will explore what controls stem cell differentiation using hands-on experiments, with emphasis on methods to engineer cell fate for regenerative medicine. Prerequisite: BME 2104

  • BME 4315

    Systems Bioengineering
     Rating

     Difficulty

     GPA

    3.95

    Last Taught

    Spring 2026

    This course introduces techniques for constructing mathematical and computational models of biological processes. We utilize experimental data to validate those models at many levels of organizational scale -- from genome to whole-tissue. Prerequisites: APMA 2130 or MATH 3250, BME 2101, BME 2104, and BME 2315.

  • BME 4350

    Biomedical Engineering Data Science
     Rating

     Difficulty

     GPA

    3.74

    Last Taught

    Spring 2026

    Introduces genomics and bioinformatics theory and tools to analyze large scale biological data. Specific topics covered are Introduction to Linux and R statistical programming language, computations on the high-performance computational cluster, analysis of sequencing data with applications in gene expression and protein/DNA interactions, differential expression analysis, pathway and co-expression network analysis. Prereq: (APMA 3110 or APMA 3100 or MATH 3100) and (CS 1110 or CS 1111 or CS 1112 with grade of C- or better or successfully completed CS 1110 place-out test) and BME major or minor