• PHYS 5620

    Solid State Physics
     Rating

    3.33

     Difficulty

    5.00

     GPA

    3.55

    Last Taught

    Fall 2025

    This course will study various phenomena in condensed matter physics, including crystallography, basic group theory, x-ray and neutron diffraction, lattice vibrations, electrons in a metal, electronic band theory, electrons under an external magnetic field, semiconductors, magnetism and superconductivity. Not only the topics but also the theoretical and experimental techniques that are covered in this course are essential for PhD students as well as advanced Undergraduate students in Physics, Chemistry, Chemical Engineering, and Materials Science and Engineering to excel in their research career.Prerequisite: PHYS 3650 (Quantum Mechanics I) or an equivalent course

  • PHYS 5630

    Computational Physics I
     Rating

    5.00

     Difficulty

    5.00

     GPA

    3.47

    Last Taught

    Fall 2025

    Surveys computational methods for problem solving in the physical sciences. Topics include numerical precision and efficiency, solutions of differential equations, optimization problems, Monte Carlo simulation, statistical methods, and data analytics. Tools for data visualization and use of libraries in both C/C++ and Python will be explored. Prerequisites: PHYS 2410 or PHYS 2415, PHYS 2620, and programming experience in Python and/or C.

  • PHYS 1130

    Physics of Sports
     Rating

     Difficulty

     GPA

    3.76

    Last Taught

    Summer 2025

    A study of the physics concepts behind the motion of spinning and curving projectiles in worldwide sports such as soccer, tennis, basketball, baseball, football, etc. and rolling and sliding balls/diska along a flat surface. Basic explanations include utilizing kinematics, gravity, friction, air flow, and Newton's Laws. Learn about hang time, topspin, dimples,drag crisis, sideways forces, least energy launch angle, jumping, and crouching.

  • PHYS 3140

    Intermediate Laboratory
     Rating

     Difficulty

     GPA

    3.50

    Last Taught

    Spring 2025

    Selected experiments in mechanics, thermodynamics, electricity and magnetism, optics, and modern physics. One lecture hour and four laboratory hours per week. Prerequisites: PHYS 1429, PHYS 2419; co-requisite: PHYS 2620.

  • PHYS 3630

    Computational Physics
     Rating

     Difficulty

     GPA

    3.12

    Last Taught

    Fall 2025

    Surveys computational methods for problem solving in the physical sciences. Topics include numerical precision and efficiency, solutions of differential equations, optimization problems, Monte Carlo simulation, statistical methods, and data analytics. Tools for data visualization and use of libraries in both C/C++ and Python will be explored. Prerequisites: PHYS 2410 or PHYS 2415, PHYS 2620, and programming experience in Python and/or C.

  • PHYS 3993

    Independent Study
     Rating

     Difficulty

     GPA

    Last Taught

    Fall 2025

    Individual study of topics in physics not normally covered in formal classes. Study is carried out under the tutelage of a faculty member with whom the requirements are agreed upon prior to enrollment. (S-SS) Prerequisite: Instructor permission

  • PHYS 3995

    Research
     Rating

     Difficulty

     GPA

    Last Taught

    Fall 2025

    A research project on a topic in physics carried out under the supervision of a faculty member culminating in a written report. May be taken more than once. (S-SS) Prerequisite: Instructor permission.

  • PHYS 5000

    Physics Colloquium
     Rating

     Difficulty

     GPA

    Last Taught

    Fall 2025

    First and second year students enrolled in the Physics PhD program are required to take Physics Colloquium in their first and second years of study.

  • PHYS 5110

    Special Topics in Classical and Modern Physics
     Rating

     Difficulty

     GPA

    Last Taught

    Fall 2025

    Lectures on topics of current interest in physics research and pedagogy. May be repeated for credit. Prerequisite: Instructor permission.

  • PHYS 5210

    Discrete Group Theory for Condensed Matter Physics
     Rating

     Difficulty

     GPA

    3.51

    Last Taught

    Spring 2025

    Group theory is an elegant method based on symmetry to understand complex phenomena in nature. This course is to learn the basic principles of Discrete Group Theory and its application to Condensed Matter Physics. Representation theory, characters and basis functions of a group, and group theory in quantum mechanics will be discussed to learn the basic principles, and a few applications will be discussed. Prerequisite: PHYS 3650 or CHEM 3410.