• PHYS 5110

    Special Topics in Classical and Modern Physics
     Rating

     Difficulty

     GPA

    Last Taught

    Spring 2026

    Lectures on topics of current interest in physics research and pedagogy. May be repeated for credit. Prerequisite: Instructor permission.

  • PHYS 5160

    Introduction to String Theory
     Rating

     Difficulty

     GPA

    3.62

    Last Taught

    Spring 2026

    This course introduces a modern topic in theoretical high energy physics to an advanced undergraduate / beginner graduate student audience. Among the directions which are being explored are the physics of extra dimensions, and a unified treatment of gravity and electromagnetism in the context of string theory. Prerequisite: Physics 3210 (Classical Mechanics), 3430 (Electricity & Magnetism II) and 3660 (Quantum Mechanics II), or permission of the instructor.

  • PHYS 5190

    Electronics Lab
     Rating

    5.00

     Difficulty

    2.00

     GPA

    Last Taught

    Fall 2025

    Practical electronics for scientists, from resistors to microprocessors. Prerequisite: Instructor permission.

  • PHYS 5210

    Discrete Group Theory for Condensed Matter Physics
     Rating

     Difficulty

     GPA

    3.51

    Last Taught

    Spring 2026

    Group theory is an elegant method based on symmetry to understand complex phenomena in nature. This course is to learn the basic principles of Discrete Group Theory and its application to Condensed Matter Physics. Representation theory, characters and basis functions of a group, and group theory in quantum mechanics will be discussed to learn the basic principles, and a few applications will be discussed. Prerequisite: PHYS 3650 or CHEM 3410.

  • PHYS 5240

    Introduction to the Theory of General Relativity
     Rating

    4.33

     Difficulty

    5.00

     GPA

    3.35

    Last Taught

    Fall 2024

    Reviews special relativity and coordinate transformations. Includes the principle of equivalence; effects of gravitation on other systems and fields; general tensor analysis in curved spaces and gravitational field equations; Mach's principle, tests of gravitational theories; perihelion precession, red shift, bending of light, gyroscopic precession, radar echo delay; gravitational radiation; relativisitic stellar structure and cosmography; and cosmology. Prerequisite: Advanced calculus through partial differentiation and multiple integration; vector analysis in three dimensions.

  • PHYS 5310

    Optics
     Rating

    2.67

     Difficulty

    3.50

     GPA

    3.23

    Last Taught

    Fall 2025

    Includes reflection and refraction at interfaces, geometrical optics, interference phenomena, diffraction, Gaussian optics, and polarization. Prerequisite: PHYS 2320, 2415, 2610, or an equivalent college-level electromagnetism course; knowledge of vector calculus and previous exposure to Maxwell's equations.

  • PHYS 5320

    Fundamentals of Photonics
     Rating

    3.67

     Difficulty

    4.00

     GPA

    3.33

    Last Taught

    Spring 2025

    This course is designed to provide an understanding of the physics that underlies technologies such as lasers, optical time/frequency standards, laser gyros, and optical telecommunication. Covers the basic physics of lasers and laser beams, nonlinear optics, optical fibers, modulators and optical signal processing, detectors and measurements systems, and optical networks. Prerequisite: PHYS 5310 or instructor permission.

  • PHYS 5620

    Solid State Physics
     Rating

    3.33

     Difficulty

    5.00

     GPA

    3.55

    Last Taught

    Fall 2025

    This course will study various phenomena in condensed matter physics, including crystallography, basic group theory, x-ray and neutron diffraction, lattice vibrations, electrons in a metal, electronic band theory, electrons under an external magnetic field, semiconductors, magnetism and superconductivity. Not only the topics but also the theoretical and experimental techniques that are covered in this course are essential for PhD students as well as advanced Undergraduate students in Physics, Chemistry, Chemical Engineering, and Materials Science and Engineering to excel in their research career.Prerequisite: PHYS 3650 (Quantum Mechanics I) or an equivalent course

  • PHYS 5630

    Computational Physics I
     Rating

    5.00

     Difficulty

    5.00

     GPA

    3.47

    Last Taught

    Fall 2025

    Surveys computational methods for problem solving in the physical sciences. Topics include numerical precision and efficiency, solutions of differential equations, optimization problems, Monte Carlo simulation, statistical methods, and data analytics. Tools for data visualization and use of libraries in both C/C++ and Python will be explored. Prerequisites: PHYS 2410 or PHYS 2415, PHYS 2620, and programming experience in Python and/or C.

  • PHYS 5640

    Computational Physics II
     Rating

    4.33

     Difficulty

    4.00

     GPA

    3.69

    Last Taught

    Spring 2026

    Advanced topics in computational physics including numerical methods for partial differential equations, Monte Carlo modeling, advanced methods for linear systems, and special topics in computational physics. Prerequisite: PHYS 5630, or instructor permission.