Your feedback has been sent to our team.
3.93
2.61
3.23
Spring 2025
In this class you will get a chance to explore the scientific wonders of the universe. Topics vary each semester but generally include: motion, energy, waves, electricity, magnetism, sound, light, relativity, atomic structure, molecules, quantum physics, the nucleus, chemistry, meteorology, geophysics, the solar system, stars, and cosmology. PHYS 1010 requires limited math, but has wide applications like electronics, wifi, rockets, satellites, nuclear reactors, lasers, climate change, earthquakes, the tides, eclipses, plate tectonics, fossil fuels, telescopes, solar energy, and the origin of universe. PHYS 1010 is for non-science majors. Premedical and pre-dental students should take PHYS 2010, 2020.
4.07
3.03
3.14
Spring 2025
For non-science majors. Introduces physics and science in everyday life, considering objects from our daily environment and focusing on their principles of operation, histories, and relationships to one another. 1050 is concerned primarily with mechanical and thermal objects, while 1060 emphasizes objects involving electromagnetism, light, special materials, and nuclear energy. They may be taken in either order.
3.67
4.67
3.12
Spring 2025
First semester of the introductory physics sequence recommended for prospective physics majors. Topics include particle kinematics and dynamics, energy and momentum conservation, rotational motion, fluids, oscillatory motion, waves, sound, and thermodynamics. Emphasis is on building foundations for future studies in physics. Three lecture hours. Prerequisite: MATH 1310; Co-requisite: MATH 1320; or instructor permission.
2.46
3.68
3.16
Spring 2025
First semester of introductory physics sequence recommended for engineers. Topics include particle kinematics and dynamics, energy and momentum conservation, rotational motion, fluids, oscillatory motion, waves, sound, and thermodynamics. Emphasis is on development of skills for practical applications. Three lecture hours. Co-requisite: MATH 1320 or equivalent.
1.91
3.51
3.40
Spring 2025
Group problem solving, data acquisition and analysis, and application of physics to real life scenarios in the framework of classical mechanics and thermodynamics. The course is geared towards STEM majors and required for engineering and physics majors. Co-requisites: PHYS 1425 or 1420.
4.00
4.67
3.46
Spring 2025
This course provides an introduction to the Python programming language with applications to common problems in the science and engineering fields. It emphasizes three core skills: analyzing data, simulating data, and visualizing data. No previous programming or computer experience is required. Prerequisite: MATH 1210 or equivalent, or instructor permission.
4.22
2.00
3.75
Spring 2025
This course teaches how to use the computer to solve quantitative problems. This involves learning the skills to write computer programs dedicated to certain tasks, to visualize data graphically, to use scientific software, and to learn other practical skills that are important for a future career in the sciences.
2.72
3.90
3.24
Spring 2025
Physics 2010 and 2020 constitute a terminal course sequence covering the principles of mechanics, heat, electricity and magnetism, optics, atomic, solid state, nuclear, and particle physics. A working knowledge of arithmetic, elementary algebra, and trigonometry is essential. The PHYS 2010 - 2020 sequence does not normally serve as prerequisite for the courses numbered 3110 and above. PHYS 2010, 2020, in conjunction with the laboratories PHYS 2030, 2040, satisfy the physics requirement of medical and dental schools. PHYS 2010 is prerequisite for 2020. Three lecture hours.
2.05
3.36
3.54
Spring 2025
Group problem solving, data acquisition and analysis, and application of physics to real life scenarios in the framework of electricity and magnetism. The course satisfies the requirements for pre-health students. Co-requisites: PHYS 2020. Prerequisite: PHYS 2030
2.67
4.15
3.10
Spring 2025
Second semester of introductory physics sequence recommended for engineers and other scientists. Topics include electricity, magnetism, circuits and optics. Emphasis is on development of skills for practical applications. Three lecture hours. Prerequisites: PHYS 1420 or PHYS 1425; co-requisite: MATH 2310; or instructor permission.
2.09
3.52
3.36
Spring 2025
Group problem solving, data acquisition and analysis, and application of physics to real life scenarios in the framework of electricity and magnetism. The course is geared towards STEM majors and required for engineering and physics majors. Co-requisites: PHYS 2415 or 2410. Prerequisite: PHYS 1429
3.42
3.58
3.03
Spring 2025
Introduction to quantum physics and relativity, with application to atomic structure, nuclear and elementary particle physics, condensed matter physics, and cosmology. Three lecture hours, one problem hour. Prerequisite: PHYS 1720 or 2410 or 2415, and MATH 2310 or instructor permission.
—
—
3.69
Spring 2025
Develop and extend the techniques of introductory physics and calculus to solve more complicated problems. The course covers topics in mechanics, fluids, thermodynamics, electromagnetism, waves, and optics. PHYS 1420 or 1425; MATH 2310. Co-requisites: PHYS 2410 or 2415; MATH 3250 or instructor permission
3.33
3.00
3.34
Spring 2025
Application of basic physics principles to functions of the human body: biomechanics, metabolism, cardiovascular, cognitive & respiratory systems, and the senses. Medical diagnosis and therapy technologies (e.g., PET, MRI, CT) are discussed. Prerequisite: one semester of calculus and PHYS 2010 or PHYS 1420 or PHYS 1425 or PHYS 1710. Corequisite: PHYS 1710 or PHYS 2020 or PHYS 2410 or PHYS 2415 or instructor permission.
1.11
4.33
3.34
Spring 2025
Basic physics principles of energy sources and energy production, conversion, distribution, and storage. This course will focus on the basic physics principles and applications of engines, nuclear energy, solar power and photovoltaic, geothermal, wind and hydropower, fuel cells, batteries, bioenergy and fossil energy, as well as energy harvesting in the internet age. We will also learn a closely related topic of physics of climate and "drawdown". The course will conclude with the outlook of renewable energies. Three lecture hours. Prerequisite: PHYS 2620 or instructor permission.
—
—
3.50
Spring 2025
Selected experiments in mechanics, thermodynamics, electricity and magnetism, optics, and modern physics. One lecture hour and four laboratory hours per week. Prerequisites: PHYS 1429, PHYS 2419; co-requisite: PHYS 2620.
4.00
2.00
3.41
Spring 2025
Approximately five experiments drawn from the major fields of physics. Introduces precision apparatus, experimental techniques, and methods of evaluating experimental results. Outside report preparation is required. Six laboratory hours. Prerequisite: PHYS 2640 or PHYS 3140
4.33
2.00
3.32
Spring 2025
Applications of nuclear physics and nuclear energy: Introduction to nuclear physics, radioactivity, radiation standards and units, interaction of radiation with matter, accelerators, x-ray generators, detectors, biological effects, nuclear medicine, nuclear fission and reactors, nuclear fusion. Three lecture hours. (Y) Prerequisite: PHYS 2620 or instructor permission.
3.67
4.00
3.33
Spring 2025
This course covers linear algebra and complex analysis, with a review of vector calculus. Emphasis is on applications in physics. Students cannot receive credit for both PHYS 3340 and MATH 4210. Prerequisites: Vector calculus (MATH 2310 or MATH 2315 or APMA 2120) and ordinary differential equations (MATH 3250 or APMA 2130).
3.60
3.40
3.20
Spring 2025
Systematic treatment of electromagnetic phenomena with extensive use of vector calculus, including Maxwell's equations. Prerequisite: MATH 4220, and PHYS 1720 or PHYS 2410 or PHYS 2415, or instructor permission.
4.33
4.00
2.65
Spring 2025
The course will examine basic principles of simple theories for metals, the basics of crystallography and crystal structures, the reciprocal space, lattice vibrations, elastic properties of solids, electronic band structure, impurities and defects, dielectric properties, magnetism and superconductivity. Prerequisite: PHYS 2620.
3.56
4.00
3.24
Spring 2025
Continuation of PHYS 3650. Intermediate quantum mechanics including perturbation theory; application to systems of current interest. Prerequisite: PHYS 3650.
—
—
—
Spring 2025
Individual study of topics in physics not normally covered in formal classes. Study is carried out under the tutelage of a faculty member with whom the requirements are agreed upon prior to enrollment. (S-SS) Prerequisite: Instructor permission
—
—
—
Spring 2025
A research project on a topic in physics carried out under the supervision of a faculty member culminating in a written report. May be taken more than once. (S-SS) Prerequisite: Instructor permission.
—
—
—
Spring 2025
First and second year students enrolled in the Physics PhD program are required to take Physics Colloquium in their first and second years of study.
—
—
—
Spring 2025
Lectures on topics of current interest in physics research and pedagogy. May be repeated for credit. Prerequisite: Instructor permission.
—
—
3.51
Spring 2025
Group theory is an elegant method based on symmetry to understand complex phenomena in nature. This course is to learn the basic principles of Discrete Group Theory and its application to Condensed Matter Physics. Representation theory, characters and basis functions of a group, and group theory in quantum mechanics will be discussed to learn the basic principles, and a few applications will be discussed. Prerequisite: PHYS 3650 or CHEM 3410.
3.67
4.00
3.33
Spring 2025
This course is designed to provide an understanding of the physics that underlies technologies such as lasers, optical time/frequency standards, laser gyros, and optical telecommunication. Covers the basic physics of lasers and laser beams, nonlinear optics, optical fibers, modulators and optical signal processing, detectors and measurements systems, and optical networks. Prerequisite: PHYS 5310 or instructor permission.
4.33
4.00
3.69
Spring 2025
Advanced topics in computational physics including numerical methods for partial differential equations, Monte Carlo modeling, advanced methods for linear systems, and special topics in computational physics. Prerequisite: PHYS 5630, or instructor permission.
—
—
3.39
Spring 2025
Discusses thermodynamics and kinetic theory, and the development of the microcanonical, canonical, and grand canonical ensembles. Includes Bose-Einstein and Fermi-Dirac distributions, techniques for handling interacting many-particle systems, and extensive applications to physical problems.
—
—
3.46
Spring 2025
Development of the theory of special relativity, relativistic electrodynamics, radiation from moving charges, classical electron theory, and Lagrangian and Hamiltonian formulations of electrodynamics. Prerequisite: PHYS 7420 or instructor permission.
—
—
3.39
Spring 2025
Includes angular momentum theory, techniques of time-dependent perturbation theory, emission and absorption of radiation, systems of identical particles, second quantization, and Hartree-Fock equations. Prerequisite: PHYS 7610 or instructor permission.
—
—
—
Spring 2025
Independent research or practical training supervised by a faculty member. May be repeated for credit.
—
—
3.67
Spring 2025
Studies nonlinear optical phenomena; the laser, sum, and difference frequency generation, optical parametric oscillation, and modulation techniques. Prerequisite: PHYS 5310 and exposure to quantum mechanics.
—
—
3.82
Spring 2025
The description and basic theory of the electronic properties of solids including band structure, electrical conduction, optical properties, magnetism and super-conductivity. Prerequisite: PHYS 7620 or instructor permission.
—
—
3.71
Spring 2025
Applies field theory techniques to quantum electrodynamics and to the renormalization-group description of phase transitions. Introduces the path integral description of field theory. Prerequisite: PHYS 8630.
—
—
—
Spring 2025
Introduction to the Standard Model of Electroweak and Strong Interactions, to be followed by physics beyond the Standard Model, including aspects of Grand Unification, Supersymmetry, and neutrino masses.
—
—
—
Spring 2025
For master's thesis, taken under the supervision of a thesis director.
—
—
3.96
Spring 2025
Workshops given by UVA Physics faculty describing their research.
—
—
—
Spring 2025
For students who have not passed the Qualifying exam for doctoral research, taken before a dissertation director has been selected.
—
—
—
Spring 2025
For doctoral dissertation, taken under the supervision of a dissertation director.
No course sections viewed yet.