Your feedback has been sent to our team.
—
—
—
Summer 2025
A continuation of the theory presented in MATH 5770 and 7800 intensively training students to apply the theory to proving theorems and solving problems in topology, especially in preparation for the General Examination in Topology. Problems are based on those from past General Exams. This course is offered in the summer and restricted to Mathematics and Graduate Arts and Science students.
—
—
3.72
Fall 2025
Studies groups, rings, fields, modules, tensor products, and multilinear functions. Prerequisite: MATH 5651, 5652, or equivalent.
—
—
3.37
Spring 2026
Studies groups, rings, fields, modules, tensor products, and multilinear functions. Prerequisite: MATH 5651, 5652, or equivalent.
—
—
3.91
Spring 2025
Further topics in algebra.
—
—
—
Summer 2025
A continuation of the theory presented in MATH 7751 and 7752 intensively training students to apply the theory to proving theorems in algebra, especially in preparation for the General Examination in Algebra. Problems are based on those from past General Exams. This course is offered in the summer and restricted to Mathematics and Graduate Arts and Science students.
—
—
3.57
Spring 2026
Topics include the fundamental group, covering spaces, covering transformations, the universal covering spaces, graphs and subgroups of free groups, and the fundamental groups of surfaces. Additional topics will be from homology, including chain complexes, simplicial and singular homology, exact sequences and excision, cellular homology, and classical applications. Prerequisite: MATH 5352, 5770, or equivalent.
—
—
—
Fall 2025
Devoted to chomology theory: cohomology groups, the universal coefficient theorem, the Kunneth formula, cup products, the cohomology ring of manifolds, Poincare duality, and other topics if time permits. Prerequisite: MATH 7800.
—
—
3.58
Fall 2025
Topics include smooth manifolds and functions, tangent bundles and vector fields, embeddings, immersions, transversality, regular values, critical points, degree of maps, differential forms, de Rham cohomology, and connections. Prerequisite: MATH 5310, 5770, or equivalent.
—
—
—
Spring 2025
Examines fiber bundles; induced bundles, principal bundles, classifying spaces, vector bundles, and characteristic classes, and introduces K-theory and Bott periodicity. Prerequisite: MATH 7800.
—
—
—
Fall 2025
Definition of homotopy groups, homotopy theory of CW complexes, Huriewich theorem and Whitehead's theorem, Eilenberg-Maclane spaces, fibration and cofibration sequences, Postnikov towers, and obstruction theory. Prerequisite: MATH 7800.
No course sections viewed yet.