Your feedback has been sent to our team.
4.33
4.00
3.58
Fall 2025
Studies the fundamental theorems of analytic function theory.
5.00
5.00
3.65
Spring 2026
This course is a continuation of MATH 2315. Covers topics from linear algebra/differential equations/real analysis. Success in this course and MATH 2315 (grades of B- or higher) exempts the student from the math major requirement of taking MATH 3351 and MATH 3250. Students are encouraged to take more advanced courses in these areas. Prerequisite: MATH 2315.
5.00
4.00
3.21
Spring 2026
This class introduces students to the mathematics used in pricing derivative securities. Topics include a review of the relevant probability theory of conditional expectation and martingales/the elements of financial markets and derivatives/pricing contingent claims in the binomial & the finite market model/(time permitting) the Black-Scholes model. Prerequisites: MATH 3100, MATH 3351 and a proof-based course (MATH 3000, MATH 3310 or MATH 3354).
5.00
2.00
3.45
Fall 2025
Topics include abstract topological spaces & continuous functions/connectedness/compactness/countability/separation axioms. Rigorous proofs emphasized. Covers myriad examples, i.e., function spaces/projective spaces/quotient spaces/Cantor sets/compactifications. May include intro to aspects of algebraic topology, i.e., the fundamental group. Prerequisites: MATH 2310, MATH 3310 and MATH 3351 or equivalent.
—
—
3.56
Spring 2026
A second course in ordinary differential equations, from the dynamical systems point of view. Topics include: existence and uniqueness theorems; linear systems; qualitative study of equilibria and attractors; bifurcation theory; introduction to chaotic systems. Further topics as chosen by the instructor. Applications drawn from physics, biology, and engineering. Prerequisites: MATH 3351 or APMA 3080 and MATH 3310 or MATH 4310.
—
—
—
Fall 2025
This course provides the opportunity to offer a new topic in the subject of mathematics.
—
—
3.18
Fall 2025
Geometric study of curves/surfaces/their higher-dimensional analogues. Topics vary and may include curvature/vector fields and the Euler characteristic/the Frenet theory of curves in 3-space/geodesics/the Gauss-Bonnet theorem/and/or an introduction to Riemannian geometry on manifolds. Prerequisites: MATH 2310, MATH 3250 and MATH 3351 or instructor permission.
—
—
3.78
Spring 2026
This course will introduce students to the techniques and methods of mathematical research. Students will independently work with mathematical literature on a topic assigned by the instructor and present their findings in various formats (presentation, paper etc.).
—
—
—
Fall 2025
This course provides a framework for the completion of a Distinguished Major Thesis, a treatise containing an exposition of a chosen mathematical topic. A faculty advisor guides a student through the beginning phases of the process of research and writing. Prerequisite: Acceptance into the Distinguished Major Program.
—
—
—
Spring 2026
This is the second semester of a two semester sequence for the purpose of the completion of a Distinguished Major Thesis. A faculty member guides the student through all phases of the process which culminates in an open presentation of the thesis to an audience including a faculty evaluation committee. Prerequisite: MATH 4900.
No course sections viewed yet.