Your feedback has been sent to our team.
3.33
4.01
2.98
Fall 2025
A second calculus course for natural-science majors, students planning additional work in mathematics, and students intending to pursue graduate work in the applied social sciences. Topics include applications of the integral, techniques of integration, differential equations, infinite series, parametric equations, and polar coordinates. Prerequisite: MATH 1310 or equivalent; at most one of MATH 1220 and MATH 1320 may be taken for credit.
3.83
4.02
3.19
Fall 2025
Surveys major topics of modern algebra: groups, rings, and fields. Presents applications to areas such as geometry and number theory; explores rational, real, and complex number systems, and the algebra of polynomials. Students without prior experience constructing rigorous proofs are encouraged to take Math 3000 before or concurrently with Math 3354. Prerequisite: MATH 1320.
4.10
4.14
3.43
Fall 2025
Review of topics from Math 3351: vector spaces, bases, dimension, matrices and linear transformations, diagonalization; however, the material is covered in greater depth and generality. The course continues with more advanced topics including Jordan canonical forms and introduction to bilinear forms. Prerequisites: a proof-based course and familiarity with computational aspects of elementary linear algebra. Math 3354 is strongly recommended
3.50
4.33
3.03
Fall 2025
This course is a beginning course in partial differential equations/Fourier analysis/special functions (such as spherical harmonics and Bessel functions). The discussion of partial differential equations will include the Laplace and Poisson equations and the heat and wave equations. Prerequisites: MATH 3250 and either MATH 3351 or MATH 4210.
3.55
4.53
3.61
Fall 2025
Covers the material from Math 2310 (multivariable calculus) plus topics from complex numbers, set theory, and linear algebra. Prepares students for taking advanced mathematics classes at an early stage. Credit is not given for both Math 2310 and Math 2315.
3.63
4.88
3.48
Fall 2025
This course covers the basic topology of metric spaces/continuity and differentiation of functions of a single variable/Riemann-Stieltjes integration/convergence of sequences and series. Prerequisite: MATH 3310 or permission of instructor.
—
—
—
Fall 2025
This course provides the opportunity to offer a new topic in the subject of mathematics.
—
—
3.18
Fall 2025
Geometric study of curves/surfaces/their higher-dimensional analogues. Topics vary and may include curvature/vector fields and the Euler characteristic/the Frenet theory of curves in 3-space/geodesics/the Gauss-Bonnet theorem/and/or an introduction to Riemannian geometry on manifolds. Prerequisites: MATH 2310, MATH 3250 and MATH 3351 or instructor permission.
—
—
—
Fall 2025
This course provides a framework for the completion of a Distinguished Major Thesis, a treatise containing an exposition of a chosen mathematical topic. A faculty advisor guides a student through the beginning phases of the process of research and writing. Prerequisite: Acceptance into the Distinguished Major Program.
—
—
3.97
Fall 2025
Reading and study programs in areas of interest to individual students. For third- and fourth-years interested in topics not covered in regular courses. Students must obtain a faculty advisor to approve and direct the program.
No course sections viewed yet.