Your feedback has been sent to our team.
A calculus-based introduction to probability theory and its applications in engineering and applied science. Includes counting techniques, conditional probability, independence, discrete and continuous random variables, probability distribution functions, expected value and variance, joint distributions, covariance, correlation, the Central Limit theorem, the Poisson process, an introduction to statistical inference. Students must have completed (APMA 2120 or MATH 2310 or MATH 2315) AND (CS 1110 or CS 1111 or CS 1112 or CS 1113 or successfully completed the CS 1110 place out test).
4.89
2.33
3.51
—
Spring 2024
4.33
3.50
3.07
—
Fall 2025
4.00
4.50
3.20
—
Fall 2025
3.92
3.00
3.44
—
Spring 2020
3.83
3.00
3.15
—
Summer 2015
3.83
3.50
3.14
—
Spring 2025
3.67
2.50
3.36
—
Spring 2023
3.33
4.00
3.01
—
Fall 2022
3.25
3.88
2.94
2
Spring 2026
3.17
2.50
—
—
Spring 2025
3.03
3.78
2.76
—
Fall 2021
2.10
4.10
2.64
—
Fall 2011
2.03
3.79
2.69
—
Spring 2017
1.48
4.29
2.60
—
Spring 2023
1.33
4.50
3.00
—
Spring 2014
—
—
3.16
—
Summer 2016
—
—
2.51
—
Fall 2009
—
—
2.96
—
Fall 2012
—
—
3.56
—
Spring 2023
—
—
—
—
Spring 2022
—
—
3.00
—
Spring 2019
—
—
3.20
—
Fall 2020
—
—
2.75
—
Spring 2017
—
—
—
—
Fall 2024
—
—
—
1
Spring 2026
—
—
—
—
Spring 2025
—
—
—
1
Spring 2026
No course sections viewed yet.